
 

The nucleotide-binding sub-proteome of mustard 

chloroplasts and its involvement in plastid redox 

signaling 

 

 

 

                                                         

 

Dissertation 

 

To Fulfill the  

Requirements for the Degree of 

„doctor rerum naturalium“ (Dr. rer. nat.) 

 

 

 

 

Submitted to the Council of the Faculty  

of Biology and Pharmacy 

of the Friedrich Schiller University Jena 

 

 

 

 

by Schattschneider, Yvonne 

nee Schröter 

 

born on 15.06.1979 in Querfurt 

 



Verteidigung der Dissertation am 6. Februar 2015. 

Gutachter:  1. Prof. Dr. Severin Sasso 

Institut für Allgemeine Botanik und Pflanzenphysiologie, 

Friedrich-Schiller-Universität Jena 

 

   2. PD Dr. Volker Wagner 

Institut für Allgemeine Botanik und Pflanzenphysiologie, 

Friedrich-Schiller-Universität Jena 

 

   3. Prof. Dr. Karin Krupinska 

   Botanisches Institut und Botanischer Garten,   

   Christian-Albrechts-Universität zu Kiel 

 



Table of content 
   

i 
 

Table of content 

 

Table of content  i 
 
Abbreviations iv 
 

1 Introduction 1 
 

1.1 Chloroplasts as location for photosynthesis 1 
 
1.2 Plastids as endosymbiotic organelles 2 
 
1.3 Plastid gene expression 3 
 
1.4 The plastid gene expression apparatus 4 
 
1.5 Communication signals of plant cells and chloroplasts 5 
 
1.6 Redox signals as mediator in acclimation and stress responses 6 
 
1.7 Generation and analysis of photosynthetic redox signals 7 

 
2 Aims 9 
 
3 Overview of manuscripts 11 
 
4 Manuscript I 15 
 

Dietzel L, Steiner S, Schröter Y and Pfannschmidt T. Plastid-to-
nucleus communication in plant cells: Retrograde signalling. In: The 
Chloroplast - Interaction with the Environment, Plant Cell Monographs 
2008 Vol 13. 181-206 

 
5 Manuscript II 42 
 

Pfannschmidt T, Bräutigam K, Wagner R, Dietzel L, Schröter Y, 
Steiner S, Nykytenko A. Potential regulation of gene expression in 
photosynthetic cells by redox and energy state: approaches towards 
better understanding. Ann Bot 2009 Feb;103(4):599-607. doi: 
10.1093/aob/mcn081. Epub 2008 May 20. 

 
6 Manuscript III 52 
 

Steiner S, Dietzel L, Schröter Y, Fey V, Wagner R, Pfannschmidt T. 
The role of phosphorylation in redox regulation of photosynthesis 
genes psaA and psbA during photosynthetic acclimation of mustard. 
Mol Plant 2009 May;2(3):416-29. doi: 10.1093/mp/ssp007. Epub 2009 
Feb 27. 

 



Table of content 
   

ii 
 

7 Manuscript IV 67 
 

Schröter Y*, Steiner S*, Matthäi K, Pfannschmidt T. Analysis of 
oligomeric protein complexes in the chloroplast sub-proteome of 
nucleic acid-binding proteins from mustard reveals potential redox 
regulators of plastid gene expression. Proteomics 2010 
Jun;10(11):2191-204. 
* These authors contributed equally to this work 
 

8 Manuscript V 83 
 

Steiner S, Schröter Y, Pfalz J, Pfannschmidt T. Identification of 
essential subunits in the plastid-encoded RNA polymerase complex 
reveals building blocks for proper plastid development. Plant Physiol 
2011 Nov;157(3): 1043-55. doi: 10.1104/pp.111.184515. Epub 2011 
Sep 23. 

 

9 Manuscript VI 97 
 

Pfalz J, Liebers M, Hirth M, Grübler B, Holtzegel U, Schröter Y, Dietzel 
L, Pfannschmidt T. Environmental control of plant nuclear gene 
expression by chloroplast redox signals. Front Plant Sci 2012 Nov 
19;3: 257. doi: 10.3389/fpls.2012.00257. eCollection 2012. 

 
10 Manuscript VII 107 
 

Schröter Y, Steiner S, Weisheit W, Mittag M, Pfannschmidt T. A 
purification strategy for analysis of the nucleotide binding sub-
proteome from chloroplasts of mustard cotyledons. in revision at 
Frontiers in Plant Science 
 

11 General discussion 149 
 

11.1 Redox signal triggered gene expression 149 
 
11.2 LTR in mustard cotyledons 150 
 
11.3 Characterization of the HS protein fractions 151 
 
11.4 2D BN-PAGE 153 
 
11.5 PC chromatography 154 
 
11.6 PEP, PAPs and pTACs 156 
 
11.7 Translation associated proteins in HS and PC fractions 158 
 
11.8 Protein homeostasis related proteins 160 
 
11.9 Proteins involved in photosynthesis 160 



Table of content 
   

iii 
 

11.10 Other identified proteins in HS and PC fractions 161 
 
11.11 Proteins with plastid affiliation 162 
 
11.12 Conclusion 163 
 

Abstract 164 
 
Zusammenfassung 166 
 
Literatur 168 
 
Eigenständigkeitserklärung I 
 
Scientific publications and presentations II 
 



Abbreviations 
   

iv 
 

Abbreviations 

2D  two dimensional 
ADP  adenosine diphosphate 
Alpha-NAC-like  Alpha-nascent polypeptide associated complex like 
AtECB1  Arabidopsis early chloroplast biogenesis 1 
ATP  adenosine triphosphate 
BN-PAGE blue native polyacrylamide gel electrophoresis 
CAC3   Acetyl-coenzyme A carboxylase carboxyl transferase 

subunit alpha 
CRU3  cruciferin 3 
CSK  chloroplast sensor kinase 
CSP41  chloroplast steem loop binding protein of 41 kDa 
cTP  chloroplast transit peptide 
Cytb6f  cytochrome b6f 
DBMIB  2,5-Dibromo-3-methyl-6-isopropyl-p-benzoquinone 
DCMU  3-(3,4-dichlorophenyl)-1,1-dimethylurea) 
DNA  desoxyribonucleic acid 
EF1-alpha4  Elongation factor 1-alpha4 
EF-tu  Elongation factor tu 
eIF  Eukaryotic translation initiation factor  
EMSA  electrophoretic mobility shift assay 
ESI-MS/MS  electron spray ionisation-tandem mass spectrometry 
FabZ  Fatty acid biosynthesis z 
FLN1  Fructokinase-like 1 
FSD  Iron superoxide dismutase 
HS  heparin Sepharose 
Hsp  heat shock protein  
Hsp70  heat shock protein of 70 kDa 
IEF  isoelectric focussing 
IF  initiation factor 
kDa  kilo-Dalton 
Lhc  light harvesting complex 
lTP  luminal transit peptide 
LTR  long term response 
MDH  Malate dehydrogenase 
MFP2  Multi functional protein 2 
MLS  Malate synthase 

MS  mass spectrometry 
MurE-ligase  UDP-N-acetylmuamoylalanyl-d-glutamate-2,6-

diaminopimelate ligase 
NAD+/NADH  nicotinamide adenine dinucleotide (oxidized/reduced) 
NADP+/NADPH  nicotinamide adenine dinucleotide phosphate 

(oxidized/reduced) 
NEP  nucleus-encoded plastid RNA-polymerase 
NL  non linear 
nm  nano meter 
P5CR  Pyrroline-5-carboxylate reductase 
PAGE  poly-acrylamide gel electrophoresis 
PAP  PEP associated protein 
PC  phosphocellulose 



Abbreviations 
   

v 
 

PEP  plastid-encoded plastid RNA-polymerase 
PET  photosynthetic electron transport 
PLP  pyridoxalphosphat 
PQ  plastoquinone 
PS I, II photosystem I, II 
PSAT  Phosphoserine aminotransferase 
pTAC  plastid transcriptionally active chromosome 
RbcS  RubisCO small subunit 
RNA  ribonucleic acid 
ROS  reactive oxygen species 
rRNAs  ribosomal ribonucleic acid 
RubisCO  Ribulose-1,5-bisphosphate-carboxylase/-oxygenase 
SDS  sodium-dodecyl sulphate 
SHMT  Serine hydroxymethyltransferase 
SpoU methylase  tRNA/rRNA methyltransferase 
STN7  state transition 7 kinase 
STR  short-term response 
TCP1  T-complex protein 1 
Tic  Translocon of the inner membrane 
Toc  translocon of the outer membrane 
tRNA  transfer ribonucleic acid 
TRXz  Thioredoxin z 
λ  wavelenght 
 



Introduction 
   

1 
 

1 Introduction 

 

1.1 Chloroplasts as location for photosynthesis 

 

The chloroplasts as typical organelles of plants and algae fulfill an enormous 

achievement by converting solar energy into a useable form for themselves and 

other organisms and thus ensure life on earth. The process of photosynthesis 

takes place in chloroplasts thylakoid membranes where light energy, carbon 

dioxide and water are transferred into organic material and oxygen. 

Embedded in thylakoids are two photon-catching photosystems, photosystem II 

(PSII) and photosystem I (PSI), each consisting of a reaction center with light 

wavelength absorption maxima at λ=700nm (PSI) and λ=680nm (PSII) and 

associated light harvesting complexes (Lhc). These photosystems are crucial 

for capturing solar energy and transmit it to excite electrons. For linear photo-

phosphorylation the photosystems are connected in series via the 

photosynthetic electron transport (PET) chain of several electron carriers. They 

transfer electrons generated by water oxidation on the manganese cluster of the 

oxygen evolving complex inter alia via plastoquinol and the cytochrome b6f 

complex to ferredoxin in order to reduce NADP+ to NADPH by the ferredoxin-

NADPH-oxidoreductase and thus fix the energy. During electron transport a 

proton gradient between thylakoid lumen and stroma is generated which drives 

ATP synthesis by ATP synthase. This classical Z-scheme of photosynthesis 

may be diversified to the cyclic electron transport which involves only PSI. 

Instead of reducing NADP+ electrons were directly transferred back to the 

cytochrome b6f complex and the proton gradient for ATP synthesis is 

generated. 

This so-called light reaction is complemented by carbon dioxide fixation and 

reduction in the Calvin-Benson cycle. In this dark-reaction the regeneration of 

ADP and NADP+ for reuse in the light reaction takes place (Aro and Andersson 

2001; Blankenship 2002). 
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1.2 Plastids as endosymbiotic organelles 

 

Plant cell organelles, mitochondria and plastids, have an endosymbiotic origin 

and evolved out of unicellular ancestors. Thereby chloroplasts progenitors are 

unicellular photosynthetic algae (Mereschkowsky 1905, Martin et al. 1999, 

Blankenship 2001, Willis and McElwain 2002, Martin et al. 2002, Dyall et al. 

2004, Kutschera and Niklas 2005). Most of the ancestor genes are integrated 

into the nuclear genome of plant cells during evolution or even lost and thus 

organelles are strongly dependent on nuclear gene expression (Martin et al. 

2002, Timmis et al. 2004). The comparison of the nuclear genome of 

Arabidopsis thaliana (L.) with prokaryotic, cyanobacterial and yeast genomes 

showed that approximately 18% of the A. thaliana genome originates from the 

cyanobacterial ancestor of plastids (Martin et al. 2004; Leister 2003). 

Nevertheless organelles retain their own gene expression machinery and genes 

for important organellar processes as relict of endosymbiosis and hence 

semiautonomy. 

Even the gene expression machinery as well as the photosynthetic apparatus 

and all other structural and metabolic elements of chloroplasts comprise a 

mixture of plastid and nucleus encoded proteins. All in all the chloroplast 

proteome consists of about 3000 proteins but only about 80 of them are plastid 

encoded (Leister 2003; Richly and Leister 2004). The detailed composition of 

the plastid proteome and sub-proteomes are fragmentary but clarified within this 

work concerning the constitution of the plastid gene expression machinery.  

The majority of plastid proteins is encoded by the nuclear genome, translated 

on cytosolic ribosomes and transferred into plastids across the organelle 

membranes via the Toc (translocon of the outer membrane) and Tic 

(Translocon of the inner membrane) translocation systems (Soll 2002; Jarvis 

and Soll 2002; Soll and Schleiff 2004; Inaba and Schnell 2008; Li and Chiu 

2010; Shi and Theg 2013). For recognition and initialization of this translocation 

process nucleus encoded chloroplast proteins carry N-terminal transit peptides 

(cTP) as well as luminal transit peptides (lTP) when further on directed into the 

thylakoid lumen (Robinson et al. 1998; Bruce 2000). Organellar TPs share 

similarities which differentiate them to cytosolic proteins. TPs and their length 

are predictable by online tools like TargetP and ChloroP (Emanuelsson et al. 
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2000). That offers the possibility to distinguish between organellar and cytosolic 

plastid proteins in an easy and fast manner. Limitations of this TP prediction 

were discussed at several parts within this work (e.g. Schröter et al. 2010; 

Schröter et al. 2014). 

 

1.3 Plastid gene expression 

 

About 120 of original 3000-7000 cyanobacterial genes are maintained in 

plastids (Timmis et al. 2004). The plastid genome (plastome) encodes tRNAs, 

rRNAs and proteins for photosynthesis, gene expression and some other 

biological processes (Bedbrook et al. 1979; Ellis 1981; Dyer 1984; Sugiura 

1992; Martin et al. 2002; Timmis et al. 2004). Two different types of RNA 

polymerases conduct transcription in plastids. The single-subunit and phage-

type nucleus-encoded plastid RNA-polymerases (NEP) are particularly active 

during early developmental stages of plastids and the plastid-encoded plastid 

RNA-polymerase (PEP), as an Escherichia coli (E. coli)-like multisubunit protein 

complex, executes the main transcriptional activity (Hess and Börner 1999; 

Cahoon and Stern 2001; Lysenko and Kuznetsov 2005; Shiina et al. 2005; Liere 

et al. 2011; Yagi and Shiina 2014). The PEP consists of four different plastid 

encoded subunits 2α, β, β’ and β’’, creating the core enzyme, complemented by 

nucleus encoded σ factors for promoter recognition and hence nuclear control 

of plastid gene expression via PEP (Igloi and Kossel1992; Link 1996; Allison 

2000; Shiina et al. 2005; Schweer et al. 2010; Lerbs-Mache 2011). For proper 

function the core enzyme is complemented further on by PEP associated 

proteins. The analysis of the PEP and its essential associated proteins is one 

main part of this work. 

Founded in the endosymbiotic origin of plastids the translational process is 

performed on 70S ribosome with a strong sequence homology to eubacterial 

ribosomes. The plastid 50S subunit contains 33 subunits with 31 orthologues to 

E. coli and the two plastid specific subunits and the 30S subunit is composed of 

21 E. coli orthologues and 4 plastid specific proteins with no homologues in 

other ribosomes (Yamaguchi et al. 2000). Also bacterial factors, acting at the 

stage of translation initiation, elongation and release, own a plastid counterpart 

in Chlamydomonas rheinhardtii and higher plant chloroplasts (Beligni et al. 
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2004). The posttranscriptional processes in plastids are of minor interest for this 

work and reviewed in excellent articles in detail elsewhere (Tiller and Bock 

2014; Wobbe et al. 2008; Marin-Navarro 2007; Rochaix 1996).  

 

1.4 The plastid gene expression apparatus 

 

The plastome itself is present in a high copy number at about 20 to 300 copies 

per chloroplast and depending on tissue and chloroplast number of the plant 

cell up to multiple thousand plastome copies per cell (Kuroiwa et al. 1982; 

Bendich 1987; Coleman and Nerozzi 1999). Several plastome copies are 

associated with proteins and RNA to constitute nucleoids which inherent the 

gene expression activity of plastids (Sato et al. 2003; Sakai et al. 2004). 

Composition and structure of plastid nucleoids is quite divers and depends on 

age, activity of plant cells and plastids and environmental conditions on them 

(Bendich 2004; Krupinska et al. 2013). 

Several studies analyzed the composition of the gene expression machinery of 

chloroplasts. Different purification procedures are effective for isolating different 

constitutions of it. The three main entities to be distinguished are whole 

nucleoids, the membrane attached plastid transcriptionally active chromosome 

(pTAC) and the soluble PEP. 

Nucleoids are effective to isolate by differential centrifugation and are present in 

a huge amount in high molecular weight fractions of plastid preparations 

(Cannon et al. 1999; Olinares et al. 2010; Majeran et al. 2012; Huang et al. 

2013). An inventory of proteins in nucleoid preparations for A. thaliana and Zea 

mays (L.) at different developmental time points and finally reference proteomes 

of this preparations are publicized (Olinares et al. 2010; Majeran et al. 2012; 

Huang et al. 2013). Nevertheless a notably amount of contaminating proteins is 

isolated together with nucleoids and it is hard to distinguish between proteins 

essential for gene expression, real components of nucleoids and remaining 

proteins with further functions. 

The pTAC can be separated from other chloroplast components by gel filtration 

as shown for several species (Hallick et al. 1976; Rushlow et al. 1982; Reiss 

and Link 1985; Bülow et al. 1987; Krupinska and Falk 1994; Suck et al. 1996; 

Krause and Krupinska 2000; Pfalz et al. 2006; Melonek et al. 2012). Via modern 
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proteomic identification methods even the more recent examinations provide a 

detailed view in TAC composition. 

The soluble PEP and its associated proteins were successful prepared via 

several purification methods. The isolation method is mostly based on anion 

exchange chromatography of plastid lysates. Heparin-Sepharose (HS) and 

Phosphocellulose (PC) were suitable column materials for separating PEP and 

nucleotide binding proteins as shown for several species (e.g. Burgess et al. 

1969; Bottomley et al. 1971; Sun et al. 1986; Rajasekhar et al. 1991; Tiller and 

Link 1993; Pfannschmidt and Link 1994, 1997; Pfannschmidt et al. 2000; Suzuki 

et al. 2004). Within this work the isolation of plastid proteins by HS- and PC-

chromatography was fundamental for further studies on the nucleotide binding 

sub-proteome of the organelles. The behavior, composition and quality of these 

preparations were analyzed here and complement the knowledge about plastid 

gene expression.  

 

1.5 Communication signals of plant cells and chloroplasts 

 

Stress response and acclimation processes to environmental, developmental 

and metabolic conditions often include changes in plastid protein composition 

and thus gene expression. Plastid protein complexes contain nuclear and 

plastid encoded subunits and demand a coordination of plastid and cytosolic 

gene expression. The communication between plant cell and organelle requires 

anterograde signals from nucleus to plastids as well as retrograde signals from 

plastid to nucleus (Taylor 1989; Mayfield 1990; Susek and Chory 1992; 

Goldschmidt-Clermont 1998; Rodermel 2001; Gray et al. 2003; Fey et al. 

2005b; Dietzel et al. 2008b). 

The anterograde signaling involves the import of nuclear encoded proteins into 

plastids and represents the obligatory influence of the plant cell to the 

organelles as tribute to endosymbiosis. The most obvious example for an 

influence in plastid gene expression by the nucleus are the sigma-subunits of 

the PEP. These are nucleus encoded and essential for plastid transcription via 

PEP. 

Retrograde signaling is very divers and contains signals of plastid gene 

expression, signals from pigment biosynthesis and signals dependent on the 
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redox state. The latter involves effects of the PET and reactive oxygen species 

(ROS). The diversity of retrograde signals is reviewed in Dietzel et al. 2008b. 

 

1.6 Redox signals as mediator in acclimation and stress responses 

 

The variety of retrograde signals is vast representing a responding network 

which coordinates acclimation processes and connects the cellular 

compartments. For a detailed understanding of the whole network its single 

components and reaction cascades have to be analyzed separately. We 

concentrated on the redox signals and redox control arising from the redox state 

of components of the PET chain in this work (Pfannschmidt et al. 2008; Dietzel 

et al. 2008b; Pfalz et al. 2012). 

Chloroplasts metabolism and especially photosynthesis has to adapt to external 

and internal changes in a fast and economic manner. Vastly important for 

chloroplasts activity is the quality and quantity of light. The divergence of 

absorption maxima in PS reaction center tends to a stronger activity of one of 

them under differing light conditions. Changes in illumination disturb the 

photosynthetic efficiency and result in imbalances of the electron transport. 

Hence an excess or deficit of electrons generates a reduced or oxidized 

electron transport chain respectively and triggers acclimation processes of the 

plastid, cytoplasm or nucleus (Pfannschmidt 2003; Baier and Dietz 2005; 

Buchanan and Balmer 2005; Pfannschmidt et al. 2008; Dietzel et al. 2008b). 

Also ROS like hydrogen peroxide or singlet oxygen may arise from over-

excitation or as by-product of photosynthesis and were involved in redox 

signaling as well (Apel and Hirt 2004; Foyer and Noctor 2005; Dietzel et al. 

2008b).  

The best analyzed source of redox signals of the PET chain is the PQ pool. The 

oxidized PQ pool signals a less active PSII and a reduced PQ pool indicates 

minor activity of the PSI. The redox state displays the rate-limitation of one of 

the PS and initiates counterbalancing short-term (STR) and long-therm 

responses (LTR) (Pfannschmidt 2003; Baier and Dietz 2005; Buchanan and 

Balmer 2005; Pfannschmidt et al. 2008; Dietzel et al. 2008b). 

The STR is performed as so called state transition and involves a 

phosphorylation/ dephosphorylation dependent movement of LhcII to the less 
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active PS-site for an increased antenna cross-section and thus stronger 

absorption of photosynthetic active radiation. (Bonaventura and Myers 1969; 

Murata 1969; Haldrup et al. 2001; Allen and Forsberg 2001; Wollman 2001). As 

signal transducer the thylakoid-associated kinase STN7 is required (Allen et al. 

1981; Allen 1992; Allen et al. 2001; Bellafiore et al. 2005; Dietzel et al. 2008b; 

Pesaresi et al. 2009). The continuance of excitation imbalances for hours or 

days result in the LTR via an adjustment of the photosystem stoichiometry by 

plastid and nuclear gene expression (Allen and Pfannschmidt 2000; Dietzel et 

al. 2008). The redox state of the PQ pool as well as the kinases STN7 and 

CSK1 are involved in signal transmission for LTR (Bonardi et al. 2005; 

Puthiyaveetil et al. 2008; Pesaresi et al. 2009).  

Beside the activity of the mentioned kinases STN7 and CSK1 only few is known 

about the redox signal transmission to the nucleus and within the plastids. Any 

hints for phosphorylation cascade dependent signal transmission exist as well 

as the idea of a direct passage of PQ molecules from plastids to the nucleus 

(Escoubas et al. 1995; Pfannschmidt 2003; Steiner et al. 2009; Shimizu et al., 

2010). A thioredoxin mediated signal transduction may involve the PEP 

associated proteins PAP6/FLN1 and PAP10/TRXz (Arsova et al. 2010; Steiner 

et al. 2011; Pfalz et al. 2012).  

However regulatory proteins which directly interact with the gene expression 

machinery during LTR are so far unknown. 

 

1.7 Generation and analysis of photosynthetic redox signals 

 

In Pfannschmidt et al. 2008 the different experimental setups generating redox 

signals in plastids are described and discussed in detail giving an overview of 

the possibilities to analyze their effects and the advantages and disadvantages 

of the single approaches. 

Inhibitors of the PET are useful for creating redox signals. The electron 

transport at the PSII may be blocked by DCMU (3-(30,40-dichlorophenyl) 1, 10-

dimethyl urea) and causes an oxidation of the following PET chain (Trebst 

1980; Pfannschmidt et al. 2008). DBMIB (2,5-dibromo-3-methyl-6-isopropyl-p-

benzoquinone) blocks the PET at the Cytb6f complex and thus creates a 
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reduced PET chain before it and an oxidized chain after the Cytb6f complex 

(Trebst 1980; Pfannschmidt et al. 2008). 

Photosynthesis mutants may be used for the identification of the origin of a 

redox signal and its effects. The PET is blocked at a distinct site caused by a 

mutation of the respective gene and thus a reduced PET chain before and an 

oxidized after the defect is generated (Yang et al. 2001; Sherameti et al. 2002; 

Frigerio et al. 2007; Pfannschmidt et al. 2008) 

Another way for generating redox signals is the use of illumination effects by a 

shift between two opposed light situations. Dark-light, low-light to high-light and 

the illumination with light of defined wavelengths that favor PSI (PSI-light) or 

PSII (PSII-light) and a switch into the respective other light provokes excitation 

imbalances on the photosynthetic apparatus (Pfannschmidt 2003; Pfannschmidt 

et al. 2008). The PSI-PSII light switch system also generates the redox signal 

under low light condition and thus largely avoids the formation of ROS and its 

related reactions (Piippo et al. 2006; Wagner et al. 2008). 
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2 Aims 

 

The knowledge about PET redox signal transmission to the responding genes 

as well as regulating components involved in gene expression is marginal. For a 

more precise understanding of the processes during redox signal mediated 

gene expression this work focuses on the analysis of the plastid gene 

expression machinery in detail, combining classical chromatographic 

purification procedures with polyacrylamide gel electrophoresis (PAGE) and 

mass spectrometry. The focus on the isolation and identification of the soluble 

PEP and proteins associated with opens a way to the complementation of the 

knowledge about plastid gene expression. 

For these analyses mustard (Sinapis alba (L.)) is an excellent organism as 

shown before in divers studies about plastids gene expression (Oelmuller et al. 

1986; Tiller and Link 1993; Pfannschmidt and Link 1994; Link 1996; Baginsky et 

al. 1997). The major advantage of S. alba is the fast growing and larger size of 

mustard cotyledons in comparison to A. thaliana. It delivers an enormous 

amount of biomass within 5-7 days of growing. This facilitates biochemical 

purification procedures substantial and is crucial when using multiple 

preparation and purification steps. Fortunately A. thaliana as well studied model 

organism is closely related to mustard. Hence data of Sinapis protein analysis 

are comparable with known data of A. thaliana and other Brassicales. It should 

be demonstrated within this work that mustard is a suitable organism for 

proteome analysis additionally to known model organisms. 

For a part of the studies of this work the illumination with PSI and PSII light as 

well as a PSI-PSII switch light regime was used during mustard cotyledon 

growth. Thus a distinct redox signal in the electron transport chain and the 

plastoquinone pool was generated. S. alba was compared to A. thaliana 

concerning the physiological reactions to a induced redox signal. This is crucial 

for the adaption of A. thaliana based models and knowledge on mustard. 

Further on the nucleic acid-binding sub-proteome of mustard plastids was 

isolated by HS-chromatography and used for analysis via different approaches 

in Steiner et al. 2009, Schröter et al. 2010 and Steiner et al. 2011 and 

represents the first purification step in Schröter et al. 2014. The quality of HS 

fractions with regards to contaminations of extra plastidic cell components was 
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tested in Schröter et al. 2010. Moreover a comparison of the isolated HS peak 

fractions in silver stained SDS polyacrylamide gels and 2D BN-PAGEs reveals 

an effect of the excitation imbalances on their protein composition (Steiner et al. 

2009; Schröter et al. 2010). The use of PC chromatography in addition to HS 

chromatography creates a different protein composition again with a stronger 

focus on nucleotide binding ones as visible by the comparison of the HS and 

PC proteins in SDS polyacrylamide gels. A more detailed view on the 

composition of the PC fractions is apparent on 2D gels with isoelectric focussing 

in the first dimension followed by SDS-PAGE in the second dimension. 

Promoter binding studies and the analysis of phosphorylation effects of the 

isolated HS fractions verify the participation of the isolated proteins on plastid 

gene expression and an involvement of phosphorylation events in redox signal 

transmission (Steiner et al. 2009).  

Finally the proteins of the HS and PC protein fractions resolved on 

polyacrylamide gels were identified via electron spray ionisation-tandem mass 

spectrometry (ESI-MS/MS) and data analysis using Brassicales databases 

(Schröter et al. 2010; Steiner et al. 2011; Schröter et al. 2014). Thus this work 

contributes considerably to the elucidation of plastid gene expression and its 

components.  
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3 Overview of manuscripts 

 

Manuscript I 

Dietzel L, Steiner S, Schröter Y and Pfannschmidt T. Plastid-to-nucleus 

communication in plant cells: Retrograde signalling. In: The Chloroplast - 

Interaction with the Environment, Plant Cell Monographs 2008 Vol 13. 181-206 

 

This review deals with retrograde signaling and summarizes the different signal 

sources and pathways from plastids to the nucleus. The signals depending on 

plastid gene expression, pigment biosynthesis and plastid redox state were 

discussed in detail and distinguished between the more developmental signals 

from undifferentiated plastids and the functional and physiological signals from 

mature plastids. Also the comprehensive view on the network of different signal 

types is depicted here as well as an integration of mitochondria as further 

organelles with retrograde signaling. 

I was involved in writing the manuscript, preparation of figures and model 

generation as well as critical discussion of the scripts content. I contributed to 

15% this work. 

 

Manuscript II 

Pfannschmidt T, Bräutigam K, Wagner R, Dietzel L, Schröter Y, Steiner S, 

Nykytenko A. Potential regulation of gene expression in photosynthetic cells by 

redox and energy state: approaches towards better understanding. Ann Bot 

2009 Feb;103(4):599-607. doi: 10.1093/aob/mcn081. Epub 2008 May 20. 

 

This article represents a review of the photosynthesis induced redox regulation 

of gene expression in photosynthetic cells. It gives an overview of known redox 

signal transmission cascades and further possible pathways within plastid and 

to the nucleus. Moreover approaches for experimental investigations of the 

redox signals and their targets were discussed, highlighting advantages and 

disadvantages of the single methods. 

I contributed to 5% to this article by critical discussion of the content and 

counterchecking of the script. 
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Manuscript III 

Steiner S, Dietzel L, Schröter Y, Fey V, Wagner R, Pfannschmidt T. The role of 

phosphorylation in redox regulation of photosynthesis genes psaA and psbA 

during photosynthetic acclimation of mustard. Mol Plant 2009 May;2(3):416-29. 

doi: 10.1093/mp/ssp007. Epub 2009 Feb 27. 

 

In this research article it was investigated if mustard (Sinapis alba) is a suitable 

organism for examinations of redox signaling and long term responses (LTR) 

and whether it is comparable with Arabidopsis thaliana and known data of this 

plant. The LTR of mustard was examined using plastid-encoded plastid RNA 

polymerase (PEP) containing protein fractions isolated via heparin-Sepharose 

chromatography. These were analyzed concerning promoter recognition, 

phosphorylation state and kinase activity.  

I contributed to 5% to this work by preparation of the plastid proteins as well as 

discussing the experimental results and manuscript content. 

 

Manuscript IV 

Schröter Y*, Steiner S*, Matthäi K, Pfannschmidt T. Analysis of oligomeric 

protein complexes in the chloroplast sub-proteome of nucleic acid-binding 

proteins from mustard reveals potential redox regulators of plastid gene 

expression. Proteomics 2010 Jun;10(11):2191-204. 

* These authors contributed equally to this work 

 

For this work the chloroplast nucleic acid-binding sub-proteome of Sinapis alba 

cotyledons was isolated using heparin-Sepharose chromatography and 

visualized by 2-D blue native PAGE. The quality of the isolated protein fractions 

was determined by western-immuno analysis, giving a basis for further studies. 

Ten oligomeric complexes and eleven further proteins were analyzed via ESI-

MS/MS and identified using a Brassicales reference database and thus mustard 

could be established as additional model organism for further analysis and 

identification of plastid proteins.  

I participated in protein isolation, mass spectrometry and protein identification, 

western analysis, knock out mutant characterization, preparation of figures, 

tables and manuscript writing to 35% to this work. 
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Manuscript V 

Steiner S, Schröter Y, Pfalz J, Pfannschmidt T. Identification of essential 

subunits in the plastid-encoded RNA polymerase complex reveals building 

blocks for proper plastid development. Plant Physiol 2011 Nov;157(3): 1043-55. 

doi: 10.1104/pp.111.184515. Epub 2011 Sep 23. 

 

In this article a catalogue of the essential subunits of the plastid-encoded plastid 

RNA polymerase was generated. Comparative analysis of biochemical 

purifications, mass spectrometric identification and the phenotypic 

characterization of knock out mutants are base of this work. 

I contributed to 20% to this work via protein isolation, mass spectrometric 

identification of proteins, writing of the manuscripts and model generation. 

 

Manuscript VI 

Pfalz J, Liebers M, Hirth M, Grübler B, Holtzegel U, Schröter Y, Dietzel L, 

Pfannschmidt T. Environmental control of plant nuclear gene expression by 

chloroplast redox signals. Front Plant Sci 2012 Nov 19;3: 257. doi: 

10.3389/fpls.2012.00257. eCollection 2012. 

 

This review article summarizes the effects of redox signals of the photosynthetic 

electron transport and its generation by environmental influences. It includes the 

recent knowledge about signal transduction to the nucleus and thus 

complements the picture of this to date only poorly examined process. Genetic 

response pattern to the redox signals as well as an integration of photoreceptor 

mediated signaling complete the recent picture. 

I was involved in critical reading and discussion of the manuscript content and 

contributed to 3% to this article. 

 

Manuscript VII 

Schröter Y, Steiner S, Weisheit W, Mittag M, Pfannschmidt T. A purification 

strategy for analysis of the nucleotide binding sub-proteome from chloroplasts 

of mustard cotyledons. Accepted for publication in Frontiers in Plant Science 
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Based on the HS preparations of Schröter et al. 2010 a second 

chromatographic step with Phosphocellulose was used in addition to HS for the 

isolation of the nucleotide binding sub-proteome of S. alba. Proteins were 

visualized on 2D-gels with isoelectric focusing for the first dimension, analyzed 

by ESI-MS/MS and identified by comparison with a Brassicales database. We 

achieved a stronger enrichment of gene expression related proteins as well as a 

reduction of contaminants and were thus able to draw a more detailed picture of 

the gene expression relevant proteome of mustard. 

I contributed to 65% to this work by protein isolation, 2D-gelelectrophoresis, 

protein identification via mass spectrometry, manuscript writing and preparation 

of the figures and tables. 
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Dietzel L., Steiner S., Schröter Y. and Pfannschmidt T.  

 

Plastid-to-nucleus communication in plant cells: Retrograde signalling.  

 

In: The Chloroplast - Interaction with the Environment, Plant Cell 

Monographs 2008 Vol 13. 181-206 
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Potential regulation of gene expression in photosynthetic cells by redox and 

energy state: approaches towards better understanding. 
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May 20. 
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ABSTRACT 

 

Plant cotyledons are a tissue that is particularly active in plastid gene expression in order to 

develop functional chloroplasts from pro-plastids, the plastid precursor stage in plant 

embryos. Cotyledons, therefore, represent a material being ideal for the study of composition, 

function and regulation of protein complexes involved in plastid gene expression. Here, we 

present a pilot study that uses heparin-Sepharose and phospho-cellulose chromatography in 

combination with isoelectric focussing and denaturing SDS gel electrophoresis (two-

dimensional gel electrophoresis) for investigating the nucleotide binding proteome of mustard 

chloroplasts purified from cotyledons. We describe the technical requirements for a highly 

resolved biochemical purification of several hundreds of protein spots obtained from such 

samples. Subsequent mass spectrometry of peptides isolated out of cut spots that had been 

treated with trypsin identified 58 different proteins within 180 distinct spots. Our analyses 

indicate a high enrichment of proteins involved in transcription and translation and, in 

addition, the presence of massive post-translational modification of this plastid protein sub-

fraction. The study provides an extended catalogue of plastid proteins from mustard being 

involved in gene expression and its regulation and describes a suitable purification strategy 

for further analysis of low abundant gene expression related proteins.  

 

Keywords 

Sinapis alba, cotyledon, chloroplast, nucleic acids binding protein, post-translational 

modification, mass spectrometry 
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INTRODUCTION 

Plant chloroplasts are semiautonomous cell organelles of endosymbiotic origin that emerged 

from a cyanobacteria-like ancestor (Lopez-Juez and Pyke, 2005). One evolutionary remnant 

of this origin is their own genome (called plastome) comprising 100-120 genes and a pre-

dominantly bacteria-like gene-expression machinery being essential for its proper expression. 

The plastome gene set in vascular plants is highly conserved and encodes mainly proteins 

with a function in photosynthesis and the gene expression machinery (Sugiura, 1992). 

However, for full functionality plastids require the import of many proteins that are encoded 

by the nuclear compartment since during evolution the endosymbiotic ancestor lost most of its 

genes to the nucleus of the host cell via horizontal gene transfer (Martin et al., 2002;Stoebe 

and Maier, 2002). These nuclear-encoded plastid proteins are translated in the cytoplasm as 

precursor molecules that are subsequently imported into plastids with the help of N-terminal 

transit peptides directing them to their correct sub-compartment (Soll and Schleiff, 2004). 

After removal of the transit peptide the mature proteins are then assembled into their final 

configuration together with the plastid-expressed proteins and, therefore, all major multi-

subunit complexes (such as photosystems, ribosomes or metabolic enzyme complexes) 

represent a patchwork of nuclear as well as plastid expressed proteins (Allen et al., 2011). 

Based on the prediction of transit peptides and genome-scale proteomics it was 

estimated that plastids may contain around 1500 - 4000 different proteins (Abdallah et al., 

2000;Baerenfaller et al., 2008;Ferro et al., 2010;Van Wijk and Baginsky, 2011). Reference 

proteomes generated for maize and Arabidopsis cover 1564 and 1559 proteins, respectively,  

so far (Huang et al., 2013) indicating that a large part of the predicted plastid proteome has yet 

not been  detected. This might be caused by the fact that plastids from different tissues (for 

instance roots, cotyledons, leaves, flowers and fruits) likely contain different protein 

compositions, but also from the fact that especially regulatory proteins are present in only 
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trace amounts that are difficult to detect in a matrix of highly abundant proteins, e.g. from 

photosynthetic apparatus (Huang et al., 2013). Further complexity in the plastid protein 

complement may derive from the occurrence of multiple post-translational modifications that 

are essential for regulatory events. 

Cotyledons display a high activity in plastid transcription and translation being 

essential for the light-induced development of chloroplasts out of the embryonic pro-plastids 

(Baumgartner et al., 1989;Baumgartner et al., 1993). Thus, the proteome of cotyledon plastids 

comprises a high amount of proteins implicated in gene expression providing a useful source 

material for the characterisation of the nucleic acids binding proteome. The chloroplast 

proteome of the dicotyledonous model organism Arabidopsis thaliana is well studied in adult 

leaves, however, an analysis of that of cotyledons is lacking mainly because the small size of 

the cotyledons is not very suitable for the isolation of chloroplasts and subsequent analyses of 

their proteins via chromatography. In recent investigations, the fast growing cruciferous plant 

mustard (Sinapis alba) demonstrated a high suitability for performing biochemical and 

physiological analyses of plastid gene expression in cotyledons since the seedlings and their 

cotyledons are much larger than that of Arabidopsis (Oelmuller et al., 1986;Tiller and Link, 

1993;Pfannschmidt and Link, 1994;Link, 1996;Baginsky et al., 1997). Isolation of cotyledons 

in the order of kilograms is easily achieved after just five days of growth and provides enough 

material even for the biochemical analysis of low-abundant proteins by chromatography 

followed by mass spectrometry. Since Sinapis is a close relative of Arabidopsis, peptide data 

evaluation for the identification of mustard plastid proteins was found to be applicable for 

well conserved proteins by using the A. thaliana or Brassicales protein databases (Schröter et 

al., 2010;Steiner et al., 2011). Thus, the use of mustard as a source for cotyledons combines 

the advantages of mustard chloroplast preparation with the availability of protein data of well 

studied organisms like Arabidopsis thaliana or some Brassica species. 
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In recent studies, proteins implicated in plastid gene expression in mustard have been 

isolated by a number of different purification schemes. These include the isolation of the 

membrane bound insoluble transcriptionally active chromosome (TAC) by ultracentrifugation 

and gel filtration (Hallick et al., 1976;Bülow et al., 1987;Pfalz et al., 2006) and the isolation 

of soluble proteins such as RNA polymerases, kinases, RNA binding proteins and sigma 

factors by various chromatographic steps (Tiller et al., 1991;Nickelsen and Link, 1993;Tiller 

and Link, 1993;Pfannschmidt and Link, 1994;Liere and Link, 1995;Baginsky et al., 1999). 

Recently, we applied the purification scheme of plastid isolation followed by protein 

enrichment via heparin-Sepharose (HS) chromatography and visualisation by two-

dimensional (2D) blue native (BN)-PAGE to isolate protein complexes such as the RNA 

polymerase complex as well as a number of gene expression related proteins (Schröter et al. 

2010, Steiner et al. 2011). However, these HS purified fractions still included a number of 

metabolic enzymes which exacerbate the analysis of the nucleic acids binding sub-proteome 

as they tend to cover low abundant proteins or even hinder their visualisation and 

identification. Here, we present a pilot characterisation of the nucleic acids binding sub-

proteome of chloroplasts from mustard cotyledons. To this end we used HS chromatography 

followed by a second chromatographic step with phosphocellulose (PC) which was shown to 

be very effective for isolating nucleic acids binding enzymes like RNA polymerases 

(Bottomley et al. 1971; Tiller and Link 1993).  This was followed by isoelectric focussing (IF) 

and 2D gel electrophoresis that allowed us to estimate the size of the nucleic acids binding 

sub-proteome and the ideal IF range for its visualisation and protein determination using mass 

spectrometry. The use of 2D gel electrophoresis also revealed massive post-translational 

modifications of the sub-proteome. 

 

RESULTS 

Enrichment of nucleic acids binding proteins from mustard chloroplasts 
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In previous studies we analysed gene expression related protein complexes from isolated 

mustard chloroplasts using a combination of heparin-Sepharose chromatography followed by 

a two dimensional blue native (BN)/SDS polyacrylamid gel-electrophoresis (2D BN-PAGE) 

and electro-spray ionisation-tandem mass spectrometry (ESI-MS/MS). Besides the plastid-

encoded RNA polymerase, various CSP41 complexes and translation related proteins, we 

identified several metabolic enzyme complexes such as GAP-dehydrogenase, ATPases or 

RubisCO that co-purify in this affinity chromatography. These abundant proteins exacerbated 

the identification of further low-abundant proteins (Schröter et al., 2010;Steiner et al., 2011). 

In addition, these studies were focussed on the analysis of large native protein complexes 

using a BN-PAGE approach. This limited the characterisation of gene expression related 

proteins that may occur in small complexes or as individual proteins. In this study, we aimed 

a deeper investigation of the size, composition and complexity of the nucleic acid binding 

sub-proteome of mustard chloroplasts. To this end, we performed chloroplast isolation and 

HS chromatography from mustard cotyledons precisely as described before (Schröter et al., 

2010).  Bound proteins were eluted with a high-salt step, concentrated by dialysis and, for 

further enrichment of gene expression related proteins, applied to a cation exchange column 

with PC as matrix as described earlier. Proteins were eluted by a second high-salt step and 

dialysed against a low-salt storage buffer for analysis and further use (see Materials and 

Methods). A first comparison of peak fractions with equal protein amounts of both 

purification steps was done by SDS-PAGE and silver staining (Fig. 1A). The PC fraction 

exhibited a selective enrichment of many protein bands between 5 and 75 kDa and a strong 

exclusion of proteins larger than 75-80 kDa. For a more detailed resolution of this protein 

fraction, we performed 2D gel electrophoresis with an isoelectric focussing (IF) as first 

dimension followed by a SDS-PAGE (Fig. 1B, C) as second dimension. Using IPG stripes 

with a non-linear (NL) pH range from 3-11 for the IF and a gradient polyacrylamide gel, we 

could obtain an overview of the total protein content leading to the identification of around 
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600 individual spots. We observed two major areas where multiple proteins accumulated on 

the gel which were located between approx. pH 4.5-7 and pH 9-11. Because of the non-

linearity of the IF gradient, proteins at the outer ranges of the IF stripe were poorly resolved 

which became mainly evident at the basic pH values. Therefore, linear IPG gels were used in 

addition, overlapping with the first one between pH 3-10 and pH 6-11. The latter gradient 

resolved the problem with spot accumulation especially observed at the cathode. The higher 

resolution led to the identification of further proteins leading to a total count of 1079 

individual protein spots within the PC fraction which could be distinguished between the 

different gels. We regard this as the nucleic acids binding sub-proteome of mustard plastids. 

Our data indicate a significant higher complexity of this specific sub-proteome as it was 

estimated earlier from the HS fractions (Schröter et al., 2010).  

 

Identification of proteins from the PC fraction by LC-ESI-MS/MS 

All 1079 spots were cut out and proteins were subjected to an in-gel tryptic digest. In 153 

cases, selected spots were pooled from duplicate gels in order to increase the protein amount 

for the subsequent measurements.  Since a database from S. alba is currently not available, 

protein identification was performed by comparing the determined mass spectrometry data to 

the Brassicales and Arabidopsis thaliana databases (compare Materials and Methods). By this 

means 225 proteins were reliably identified with at least two different peptides in 180 spots 

indicating that several spots contained more than one protein.  In addition, 36 particular 

proteins were identified in more than one spot (up to 40 different ones) suggesting 

posttranslational modification of these proteins (Table 1). In total, 58 different proteins were 

identified. In further analyses, the identified gene models were checked for presence of a 

plastid transit peptide using TargetP (Emanuelsson et al., 2000). Plastid-directing transit 

peptides could be predicted for 36 of these proteins, ten of them exhibit an additional luminal 

transit peptide and four plastid-encoded proteins were identified. Considering a detection 
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probability of 73% for a transit peptide, we estimated the percentage of true plastid proteins 

within the PC fraction to be around 94%. Some of the identified proteins were found before in 

mustard (Pfannschmidt et al., 2000;Pfalz et al., 2006;Schröter et al., 2010), but 36 were 

identified here for the first time (Table 1). 

Based on functional similarities and structural homologies, a categorization of proteins 

into protein families or subgroups was conducted (Fig. 3). A practical classification mode is 

given by the modified MapMan bin system (Thimm et al., 2004) of the Plant Proteomics Data 

Base (PPDB) (Sun et al., 2009). In Table 1, proteins were listed following the PPDB bin 

grouping as given in column 2. For further comparison, we summarised identified proteins 

into five major groups. The first group comprises transcription and transcript related proteins, 

namely subunits of the plastid encoded RNA polymerase (PEPs) and PEP associated proteins 

(PAPs) as defined in Steiner et al. 2011, other pTACs (pTAC proteins not belonging to the 

PAPs) and RNA and DNA related proteins (bin 27 and 28, not belonging to PAPs and 

pTACs). A second large group comprises translation related proteins (bin 29.2 and 29.5). 

Three further groups cover proteins involved in protein homeostasis (bin 29 and 21 not 

belonging to PEPs and PAPs), photosynthesis (bin 1) and a miscellaneous group called 

“others” including various enzymes catalysing metabolic reactions or protein modifications. 

 

PEPs, PAPs and other pTACs 

We detected most subunits of the soluble PEP complex including PAP3, PAP4, PAP5, PAP6, 

PAP8, PAP10, PAP11, PAP12 as well as the PEP core subunit RpoA (Pfalz and 

Pfannschmidt, 2013). Other PEP core subunits (RpoB, RpoC1, RpoB) and PAP1, PAP2, 

PAP7 and PAP9 were not identifiable in spots of these gels. Most of the identified proteins of 

this group became visible as single isolated spots in the acidic range (pH3-6) on the gel (Fig. 

4) and at their expected molecular weight. An exception was PAP6 representing the protein 

fructokinase-like 1 (FLN1) that contains a protein domain of the pfkB-carbohydrate kinase 
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family (Arsova et al., 2010;Steiner et al., 2011). This protein appeared in a chain of five spots 

of the same apparent molecular weight but with slightly varying isoelectric points from which 

the two strongest spots were identified as PAP6 here. This observation suggests post-

translational modification of this kinase. In addition, for PAP6 but also for PAP3 and PAP11 

one or two spots of lower molecular weight, respectively, were detected suggesting a targeted 

degradation or proteolytic modification of these two proteins (Fig. 4). For PAP4 and PAP12 

only a degradation product was detectable, while a spot of the full length protein was not 

identified. 

 Besides PEP and PAP proteins, we identified two proteins described as component of 

the transcriptionally active chromosome in mustard, PTAC4 and PTAC18 (Pfalz et al., 2006). 

PTAC4 is the vesicle-inducing protein in plastids 1 (VIPP1) which plays a crucial role in 

membrane stability (Zhang et al., 2012). The PTAC18 protein belongs to the cupin 

superfamily that merges proteins with a conserved β-barrel fold, giving this type of protein a 

strong thermal stability. It represents a family of very diverse members including enzymes 

and seed storage proteins, but also transcription factors (Dunwell et al., 2001). However, the 

exact function of pTAC18 is largely unknown. PTAC18 was identified in spot 255 being 

smaller and more in the acidic range as expected from the predicted protein representing 

likely a fragment. PTAC4 was identified in spots 243, 278, 280 and 295. 278 and 280 are on 

the same size but with slightly different IPs suggesting post-translational modification of the 

protein. 

An exceptional constituent of the PC protein fraction represents the protein CSP41 that 

appears in two forms, CSP41a and CSP41b. Originally described as the chloroplast stem-loop 

binding protein of 41 kDa (Yang et al., 1996) it has been discussed to be involved in RNA 

processing and stabilisation as well as in RNA protection (Qi et al., 2012). As described for 

the HS fractions it represents a dominant protein of the nucleic acids binding proteome of 

plastids being present in multiple multimeric complexes of highly variable sizes (Schröter et 
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al., 2010;Qi et al., 2012). In the PC fractions, the two forms of CSP41 appear to be especially 

enriched as they can be detected in 10 spots of the same apparent molecular weight of around 

34 kDa but with different IPs (three for CSP41a and seven for CSP41b). The main 

accumulation is visible in the middle of the gels between pH 5.5 and 7. The CSP41a spots are 

by far the strongest spots observed in the whole gel followed by the spots for CSP41b. 

Roughly estimated they account for 30% – 40% of the total protein content in this fraction 

making a precise estimate difficult. In addition, the proteins are detectable in 34 less stained 

and smaller spots of different sizes suggesting massive post-translational modifications as 

well as multiple degradation or targeted proteolytic events acting on both protein forms. 

These smaller protein spots of CSP41a/b appear to contain not only random fragments of the 

proteins but could be observed as reproducible spot pattern in all replicates of nucleic acids 

binding sub-proteome preparations from mustard.    

 

Translation associated proteins 

Numerous proteins identified in this work are directly or indirectly related to translation. In 

total 12 ribosomal proteins of the large 50S subunit of plastid ribosomes (PRPL) were 

identified, namely PRPL1, -4, -5, -6, -10, -12, -14, -15, -18, -21,-24, -29. The solely identified 

protein of the small 30S ribosomal subunit (PRPS) is PRPS5. We also identified two 

ribosomal subunits that belong to the large subunit of the cytosolic 80S ribosomes (CRPL), 

CRPL11 and -22-2. S. alba proteins of PRPL12-1 and PRPL29 were formerly identified by 

Pfalz et al. (2006) and PRPL6 by Schröter et al. (2010). The remaining ribosomal proteins 

listed in Table 1 are identified in mustard plastid protein samples here for the first time. 

Beside the ribosomal subunits a number of translation initiation factors were present in 

the fractions and were detected here for the first time in S. alba. Except of eIF1A (a subunit of 

the cytosolic translation initiation complex) all of them contain a predicted plastid transit 

peptide. This accounts also to eIF3 which is known as a subunit of a eukaryotic IF. IF2 and 
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IF3 represent plastid translation initiation factors while elongation factors (EF) EF-Tu and the 

eukaryotic EF1alpha4 are involved in translation elongation. eIF1A, EF-Tu and EF1-alpha4 

appear as single spots while the others were found in several spots suggesting post-

translational modifications here, too. 

Furthermore, we identified a SpoU methylase that belongs to the class of SPOUT 

enzymes and introduces a methylation of 2'-OH groups of tRNA or rRNA riboses (Cavaillé et 

al., 1999;Tkaczuk et al., 2007), and two proteins that are subunits of the nascent polypeptide 

associated complex (NAC). This dimeric complex is composed of an alpha- and beta-chain 

and may reversibly bind to ribosomes (Wiedmann et al., 1994). The alpha-NAC-like proteins 

identified during this work are encoded by different genes in Arabidopsis but exhibit a strong 

similarity within their amino acid sequence. The α-NAC like protein 1 and 3 were determined 

in the same two spots on the gels representing double spots. 

 

Proteins involved in protein homeostasis, photosynthesis and metabolism 

We identified the chloroplast heat shock cognate protein 70-2 (cpHsc70-2) which is the 

analogue of one of only two stromal Hsp70s in A. thaliana plastids (Su and Li, 2008). In 

addition, we found a TCP-1/cpn60 family chaperonin and a protein disulfide isomerase like 2-

1 (PDIL 2-1) belonging to the thioredoxin superfamily and acting as folding catalyst. All 

proteins are identified in mustard fractions here for the first time and likely function in protein 

stability or formation. The correct folding of proteins is the last but essential step of gene 

expression.  

The group of photosynthesis related proteins contains four proteins. The alpha and 

beta subunits of the plastid ATP synthase were formerly identified in S. alba (Schröter et al., 

2010). Another ATPase, the RubisCO activase and the Rieske cluster of the cytochrome b6/f 

complex were detected here first by mass spectrometry in the mustard plastid proteome. 

These proteins are most likely not involved in gene expression but co-purify in the column 
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chromatography because of their substrate affinities. This is also true for the group of the 

miscellaneous proteins including the malate dehydrogenases (MDH) and the malate synthase 

(MLS), both identified in several spots.  

Proteins involved in fatty acid metabolism were identified as well. These include 

acetyl-coenzyme A carboxylase carboxyl transferase subunit alpha (CAC3) and FabZ, a beta-

hydroxyacyl-acyl carrierprotein (ACP) dehydratase. An earlier study on the purificationof the 

acetyl-CoA carboxylase multienzyme complex also resulted in the enrichment of nucleoid-

associated proteins (Phinney and Thelen, 2005) suggesting a potential physical link between 

these two larger protein associations. 

A third protein found (MFP2) is involved in lipid degradation. It was already 

identified in the HS-fractions in former experiments (Schröter et al. 2010). We found also a 

cystein synthase and phosphoserine aminotransferase (PSAT) as well as a pyrroline-5-

carboxylate reductase (P5CR) known to be essential for amino acid metabolism and a serine 

hydroxymethyltransferase (SHMT) being essential for photorespiration. The mustard protein 

in the PC fractions matches to mitochondrial SHMT1 and 2 peptides of several Brassicales. 

The exact affiliation to one of these SHMTs is unclear since the matching peptides fit to both 

proteins (Table 1). The PC fractions contain also the myrosinase MB3 (involved in 

glucosinolate degradation) and a cruciferin fitting best to A. thaliana CRU3 (Table 1). Finally, 

also actin was detected in one spot, although mustard peptides of PC fractions match to 

different actin types of different Brassicales.  

 

DISCUSSION 

The plastid nucleic acids binding proteome of mustard 

Goal of our study was the establishment of a purification scheme allowing the estimation of 

size and composition of the plastid nucleic acids binding sub-proteome from mustard. By 

using heparin-Sepharose and phosphocellulose chromatography coupled to isoelectric 
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focussing and SDS-PAGE we could reproducibly isolate 1079 protein spots from which we 

could identify 180 protein spots by mass spectrometry. However, to our surprise these 180 

protein spots were found to represent just 58 individual proteins indicating a high degree of 

post-translational modification of this specific sub-proteome which in part might be caused by 

differential phosphorylation (Reiland et al., 2009;Reiland et al., 2011). Since we used NaF as 

phosphatase inhibitor in all preparation steps, the differential phosphorylation states of the 

analysed proteins should be well conserved. In contrast, different redox states of thiol groups 

were not maintained during our purification procedure since reducing agents were included in 

all steps. Detection of a differential redox state in these fractions will require more specific 

methods such as redox difference gel electrophoresis (redox-DIGE) (Hurd et al., 2007;Hurd et 

al., 2009). We also observed numerous smaller fragments from several proteins indicating 

degradation events. These, however, were not random as the spot pattern was reproducible 

between different preparations suggesting that it is not caused by action of proteases during 

purification, but by targeted events in the chloroplast. Whether these products represent 

intermediate steps of protein degradation or whether these fragments perform distinct 

functions remains to be determined. In summary, this high degree of post-translational 

modification indicates that the size of the sub-proteome is certainly smaller than the 1079 

spots detected. If we assume a similar percentage of individual proteins as within the 

identified spots (32.2%) for the complete fraction then we estimate 347 proteins for the total 

nucleic acids binding sub-proteome. Since we identified a number of co-purifying proteins 

involved in metabolic processes (29.3%), we had to  reduce this number to 236 proteins. 

However, our mass spectrometry determination has a certain bias since we could detect only 

the fraction of sufficiently abundant proteins which likely is enriched in metabolic enzymes. 

In addition, a significant part of post-translational modification detected in our fractions is 

focussed on only two proteins, CSP41a and b which partly compromise our estimate. Without 

these two proteins, we estimate 314 proteins for the chloroplast nucleic acids binding sub-
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proteome. This appears a reasonable number taking into account the proteins that are already 

known to be involved in the regulation of plastid gene expression such as NEP, PEP, PAPs, 

pTACs, PPRs, ribosomal proteins and so on. It, however, leaves still some space for the 

discovery of as yet unidentified regulators that might appear only in trace amounts such as 

eukaryotic transcription factors (Wagner and Pfannschmidt, 2006). 

 

 

 

Specific features of the protein fraction after PC chromatography 

PC chromatography is a well established purification step for nucleic acids binding proteins 

from chloroplasts (Bottomley et al., 1970;Tiller and Link, 1993). Crucial for the quality of 

these fractions, however, are a thorough chloroplast preparation via sucrose gradient 

centrifugation and a pre-purification step of the chloroplast lysate using HS chromatography. 

In comparison to results from earlier work using just HS fractions (Schröter et al. 2010) we 

observed a high enrichment of translation associated proteins and especially of CSP41 

proteins. Co-purification of metabolic enzymes as well as components from other cell 

compartments was clearly reduced. We obtained a good coverage of the subunits for the 

plastid RNA polymerase complex PEP; however, surprisingly the larger subunits of this 

complex were not detectable. We observed a significant reduction of proteins above 80 kDa in 

size within the PC fractions (Fig. 1), however, this might be not the reason for the failure of 

detection since all other components of the complex were identified in the fractions and 

especially RpoC2 and RpoB are known to bind DNA/RNA. Since these large subunits are 

highly conserved and have been successfully detected earlier in HS fractions (Steiner et al., 

2011) it is likely that they are not well separated on the IEF. Further analyses using additional 

enrichment methodologies before the IEF step such as size-exclusion chromatography might 

help to target this problem in the future.  
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The largest amount of all identified proteins in the PC fractions is dedicated to 

translational processes with 43% of all proteins (Fig. 3 C). The 50S subunit of plastid 

ribosomes contains 33 subunits with 31 orthologues to Escherichia coli and the two plastid 

specific subunits PRPL5 and PRPL6 (Yamaguchi and Subramanian, 2000). The 30S subunit 

is composed of 21 E. coli orthologues and 4 plastid specific proteins with no homologues in 

other ribosomes (Yamaguchi et al., 2000). Most ribosomal proteins have contact to RNA in 

various ways, either they are structural components or directly involved in the translational 

process. Thus, ribosomal proteins contain nucleic acids binding structures which adhere to the 

used column materials and represent one main component of the nucleic acids binding sub-

proteome of plastids. On the 2D-gels most of them accumulate at the higher pH-ranges and 

the use of the basic IPG-gels of pH 6-11 led to a good resolution of this group of proteins. The 

identification of 80S ribosomal proteins in plastid fractions is likely caused by the co-

purification of particles attached to the outer chloroplast membrane, like known for tonoplast 

membrane fragments (Schröter et al. 2010). The main regulation of translation occurs at the 

level of initiation which is performed by initiation factors (IF). In eukaryotes this process is 

assured via 12 eukaryotic IFs (eIF) comprised by 23 polypeptides, whereas in prokaryotes 

three IFs are sufficient (Kapp and Lorsch, 2004). In plastids orthologues for all bacteria-type 

translation factors can be found but the translational complex contains additional proteins not 

present in bacteria (Beligni et al., 2004). Three of the four IFs identified in this study contain 

a cTP although only IF2 and IF3 are plastid IFs with a prokaryotic origin. The third one, 

eIF3f, is a subunit of the eIF3 and is important for the basic cell growth and development and 

influences the expression of about 3000 genes in A. thaliana also in interaction with two other 

eIF3 subunits (Xia et al., 2010). ChloroP predicts a plastid transit peptide of 40 amino acids 

for eIF3f of A. thaliana and it was previously also identified in fractions enriched in plastid 

nucleoids (Huang et al., 2013). Thus, it seems to be a true plastid protein and not a co-

purification of the cytosolic translational apparatus. However, it might be also possible that 
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this protein possesses a dual localization both in nucleus and plastidscontributingto the 

coordination of gene expression between the two genetic compartments as proposed for other 

plant cell proteins (Krause and Krupinska, 2009). The elucidation of the preciserole of eIF3f 

in plastids and whether it is involved in the regulation of plastid gene expression will be an 

interesting field of future research. 

The dominant proteins in the PC fractions are the two proteins named CSP41a and 

CSP41b (Yang et al., 1996;Yang and Stern, 1997). CSP41a and b were also detected in 

isolates of the PEP-complex as one of the most abundant component (Pfannschmidt et al. 

2000; Suzuki et al. 2004; Schröter et al. 2010) but they appear not to belong to the PAPs but 

co-purify with these fractions because of the enormous size of their largest conglomerates 

(Peltier et al., 2006;Schröter et al., 2010;Qi et al., 2012). Here, we identified CSP41a in 8 and 

CSP41b in 40 spots of diverse sizes and isoelectric points. Thereby, both form a defined spot 

pattern which was congruent in most replicates of the 2D-gels prepared for this work. This 

suggests that not only a multimerisation of CSP41a/b occurs but maybe also an integration of 

defined fragment species of the proteins that might be important for specific functions. In 

addition to targeted fragmentation, the spot pattern after 2D SDS-PAGE suggests also a 

strong post-translational modification of the two proteins. Indeed, phosphorylation and lysine 

acetylation have been reported for the corresponding Arabidopsis proteins (Reiland et al., 

2009;Finkemeier et al., 2011;Reiland et al., 2011). The spot pattern as well as the positions of 

the two proteins in the 2d-gels is highly reminiscent to those recently reported for Arabidopsis 

(Qi et al., 2012). The only difference occurs in the number of identified spots which were 6 

Csp41a and 5 Csp41b in Arabidopsis while in mustard we observed 3 Csp41a and 7 Csp41b 

variants (besides the fragmented versions) (Fig. 5). This suggests the action of at least some 

species-specific modifications of the proteins.  

 

Conclusion 
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Here, we describe the technical requirements for a highly resolved biochemical purification of 

several hundreds of protein spots representing the nucleic acids binding sub-proteome of 

plastids. Our analyses indicate a high enrichment of proteins involved in transcription and 

translation and, in addition, the presence of massive post-translational modification of this 

plastid protein sub-fraction. Furthermore, our study provides an extended catalogue of plastid 

proteins from mustard being involved in gene expression and its regulation and describes a 

suitable purification strategy for further analysis of low abundant gene expression related 

proteins.  

 

MATERIALS AND METHODS 

 

Plant growth and Isolation of plastids 

Mustard seedlings (Sinapis alba L., var. Albatros) were cultivated under permanent white 

light illumination at 20°C and 60% humidity. Cotyledons were harvested under the respective 

light and stored on ice before homogenisation in ice-cold isolation buffer in a Waring Blender 

and filtering through muslin and nylon. Chloroplast isolation by differential centrifugation 

and sucrose gradient centrifugation in a gradient between 30 to 55% sucrose was conducted as 

described earlier (Schröter et al. 2010) 

 

Isolation of nucleic acids binding proteins by HS- and PC-chromatography 

Lysis of plastids and the chromatography at HS CL-6B was performed according to Tiller and 

Link 1993; Steiner et al. 2009). Proteins were washed, eluted with 1.2 M (NH4)2SO4 and the 

peak fractions detected via protein quantification assays (RC DC™, Bio-Rad Laboratories, 

Inc., Hercules, CA, USA) (Schröter et al. 2010). For PC chromatography pooled HS peak 

fractions were diluted to 10 % (v/v) glycerol with dilution buffer (50 mM Tris/HCl, pH 7.6, 

0.1 mM EDTA, 0.1 % (v/v) TritonX-100, 10 mM sodium fluoride, 62.5 mM (NH4)2SO4, 6 
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mM 2-mercaptoethanol). Activation and equilibration of PC (cellulose phosphate ion-

exchanger P11, Whatman™ GE healthcare UK Limited, Little Chalfont, UK) to pH 7.6 

occurred following the distributor´s instructions. Diluted HS proteins were applied to 

disposable PD-10 columns (Amersham™ GE healthcare UK Limited, Little Chalfont, UK) 

filled with activated PC, closed carefully and rotated gently for 60 min at 4°C. After fixing the 

column on a stand and washing with washing buffer (50 mM Tris/HCl, pH 7.6, 0.1 mM 

EDTA, 0.1 % (v/v) TritonX-100, 10 mM sodium fluoride, 50 mM (NH4)2SO4, 5 mM 2-

mercaptoethanol, 10 % (v/v) glycerol) proteins were eluted in 3 ml fractions with elution 

buffer (50 mM Tris/HCl, pH 7.6, 0.1 mM EDTA, 0.1 % (v/v) TritonX-100, 10 mM sodium 

fluoride, 1.2 M (NH4)2SO4, 5 mM 2-mercaptoethanol, 10 % (v/v) glycerol) and dialyzed 

against storage buffer (50 mM Tris/HCl, pH 7.6, 0.1 mM EDTA, 0.1 % (v/v) TritonX-100, 10 

mM sodium fluoride, 50 mM (NH4)2SO4, 5 mM 2-mercaptoethanol, 50 % (v/v) glycerol). 

Peak fractions were determined by a protein quantification assay (RC DC™, Bio-Rad 

Laboratories, Inc., Hercules, CA, USA), pooled and stored at -20°C 

 

2D gel electrophoresis 

For 2D gel electrophoresis an acetone precipitation of dialyzed proteins from PC 

chromatography was used to remove the storage buffer following manuals instruction (2-D 

Electrophoresis principles and methods, 2004, GE healthcare UK Limited, Little Chalfont, 

UK). For first dimension 18 cm IPG-stripes pH 3-11NL, pH 6-11 and pH3-10 were used (GE 

Healthcare UK Limited, Little Chalfont, UK). IPG-stripes were rehydrated in rehydration 

buffer (8 M urea, 0.5 % (w/v) chaps, 0.2 % (w/v) DTT, 0.5 % (v/v) IPG-Buffer, 0.002% (w/v) 

bromophenol blue) for about 14- 16 hours. An amount of 400 µg precipitated and dried 

protein per stripe was resolved in rehydration buffer and applicated on the IPG-stripes as cup-

loading procedure following manufacturer´s instructions (2-D Electrophoresis principles and 

methods, 2004, GE Healthcare UK Limited, Little Chalfont, UK). For focussing of proteins 
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the following protocol was used on IPGphor (Amersham™ GE Healthcare UK Limited, 

Buckinghamshire, UK) 6h step and hold 150V, 3h step and hold 300V, 6h gradient 1200V, 3h 

gradient 8000V, 3h step and hold 8000V. After isoelectric focussing IPG-strips were 

equilibrated twice in equilibration solution (50 mM Tris-HCl, ph 8.8, 6 M urea, 30 % (v/v) 

glycerol, 2 % (w/v) SDS, 0.002% (w/v) bromophenol blue) first with addition of 2 % (w/v) 

DTT for 15 min under gentle agitation and after removing the first solution second with 

addition of 2.5 % (w/v) iodacetamide (IAA, for alkylation of thiol groups) again for 15 min 

and gently agitated as described (2-D Electrophoresis principles and methods, 2004, GE 

Healthcare UK Limited, Little Chalfont, UK). As second dimension a SDS PAGE in gradient 

gels of 7.5-20% acrylamide with Rhinohide™ gel strengthener (Molecular Probes, Inc., 

Eugene, OR, USA) was used following manual instructions. Afterwards gels were stained 

with silver according to manufacturer´s instruction (Amersham™ GE Healthcare UK Limited, 

Buckinghamshire, UK). 

 

Tryptic digest, LC/ESI-MS/MS and data analysis 

The spot pattern of the different gels was compared. Matching low abundant spots were 

pooled (as indicated in Supp. Table 1) to increase the detectable protein amount. Tryptic 

digest of protein spots was conducted after destaining as referred (Mørtz et al., 1994;Stauber 

et al., 2003). Mass spectrometry was carried out at LCQ™-DecaXP ion trap mass 

spectrometer (Thermo Finnigan, San Jose, CA, USA) using a data-dependent scan procedure 

with four cyclic scan events as described in Schröter et al. 2010. The first cycle, a full MS 

scan of the mass range m/z 450–1200, was followed by three dependent MS/MS scans of the 

three most abundant ions. Sample run and data acquisition was performed using the 

Xcalibur™ software (Version1.3 © Thermo Finnigan 1998–2001). 76 of the low abundant 

spots were measured at a Finnigan LTQ linear ion trap mass spectrometer (Thermo Finnigan, 

Thermo Fisher Scientific Inc., Waltham, MA, USA) coupled online after a nano HPLC 
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Ultimate 3000 (Dionex, Thermo Fisher Scientific Inc., Waltham, MA, USA) (Schmidt et al., 

2006). After one full MS the instrument was set to measure the collision induced dissociation 

pattern of the four most abundant ions and exclude the measured once for 10 sec from newly 

measuring.  

The resulting spectra were analyzed using the Proteome Discoverer vs. 1.0 (Thermo 

Fisher Scientific Inc., Waltham, MA, USA) with the implemented Sequest algorithm (Link et 

al., 1999). Therefore, a database of all RefSeq (reference sequence) sequences of Arabidopsis 

thaliana and Arabidopsis lyrata as well as the complete Brassica napus and Capsella rubella 

and the remaining Brassicales proteins of NCBI was created (NCBI 2012.03.19 109146 

sequences: Arabidopsis RefSeq 67924 sequences (35375 A. thaliana, 32549 A. lyrata) + 

Brassica napus 10622 sequences + Capsella rubella 4246 sequences + other brassicales 

26354 sequences). The Proteome Discoverer Software was set to adjust the Xcorr to reach a 

false discovery rate of ≤ 1% (Veith et al., 2009). All proteins with at least two unique peptides 

were taken for further analysis. 

For transit peptide prediction the web-based tools TargetP 

(http://www.cbs.dtu.dk/services/TargetP/) (Emanuelsson et al., 2000) was used and for 

prediction of the transit peptide length the web-tool ChloroP (http://www.cbs.dtu.dk/ services/ 

ChloroP/) (Emanuelsson et al., 1999). For further analyses identified proteins were grouped 

into bins according to the modified MapMan system of the plant proteome database (ppdb) 

((http://ppdb.tc.cornell.edu/dbsearch/mapman.aspx) (Sun et al., 2009) based on the 

MapManBins of (Thimm et al., 2004). 

 

ACKNOWLEDGEMENT 

This work was supported by the Deutsche Forschungsgemeinschaft (Grants Pf323/4, 

Mi373/11-1 and Mi373/15-1). 

 



Manuscript VII 
   

128 
 

 

REFERENCES 

 

Abdallah, F., Salamini, F., and Leister, D. (2000). A prediction of the size and 

evolutionary origin of the proteome of chloroplasts of Arabidopsis. Trends in 

Plant Science 5, 141-142. 

Allen, J.F., De Paula, W.B., Puthiyaveetil, S., and Nield, J. (2011). A structural 

phylogenetic map for chloroplast photosynthesis. Trends Plant Science 16, 645-

655. 

Arsova, B., Hoja, U., Wimmelbacher, M., Greiner, E., Ustun, S., Melzer, M., Petersen, 

K., Lein, W., and Bornke, F. (2010). Plastidial Thioredoxin z Interacts with Two 

Fructokinase-Like Proteins in a Thiol-Dependent Manner: Evidence for an 

Essential Role in Chloroplast Development in Arabidopsis and Nicotiana 

benthamiana. Plant Cell 22, 1498-1515. 

Baerenfaller, K., Grossmann, J., Grobei, M.A., Hull, R., Hirsch-Hoffmann, M., 

Yalovsky, S., Zimmermann, P., Grossniklaus, U., Gruissem, W., and Baginsky, S. 

(2008). Genome-scale proteomics reveals Arabidopsis thaliana gene models and 

proteome dynamics. Science 320, 938-941. 

Baginsky, S., Tiller, K., and Link, G. (1997). Transcription factor phosphorylation by a 

protein kinase associated with chloroplast RNA polymerase from mustard 

(Sinapis alba). Plant Molecular Biology 34, 181-189. 

Baginsky, S., Tiller, K., Pfannschmidt, T., and Link, G. (1999). PTK, the chloroplast 

RNA polymerase-associated protein kinase from mustard (Sinapis alba), 

mediates redox control of plastid in vitro transcription. Plant Molecular Biology 

39, 1013-1023. 



Manuscript VII 
   

129 
 

Baumgartner, B.J., Rapp, J.C., and Mullet, J.E. (1989). Plastid transcription and DNA 

copy number increase early in barley chloroplast development. Plant Physiology 

89, 1011-1018. 

Baumgartner, B.J., Rapp, J.C., and Mullet, J.E. (1993). Plastid genes encoding the 

transcription/translation apparatus are differentially transcribed early in barley 

(Hordeum vulgare) chloroplast development. Plant Physiology 101, 781-791. 

Beligni, M.V., Yamaguchi, K., and Mayfield, S.P. (2004). The translational apparatus of 

Chlamydomonas reinhardtii chloroplast. Photosynthesis Research 82, 315-325. 

Bottomley, W., Smith, H.J., and Bogorad, L. (1970). RNA polymerases of maize: partial 

purification and properties of the chloroplast enzyme. Proceedings National 

Academy of Science U S A 71, 2412-2416. 

Bülow, S., Reiss, T., and Link, G. (1987). DNA-binding proteins of the transcriptionally 

active chromosome from mustard (Sinapis alba L.) chloroplasts. Current Genetics 

12, 157-159. 

Cavaillé, J., Chetouani, F., and Bachellerie, J.P. (1999). The yeast Saccharomyces 

cerevisiae YDL112w ORF encodes the putative 2'-O-ribose methyltransferase 

catalyzing the formation of Gm18 in tRNAs. RNA 5, 66-81. 

Dunwell, J.M., Culham, A., Carter, C.E., Sosa-Aguirre, C.R., and Goodenough, P.W. 

(2001). Evolution of functional diversity in the cupin superfamily. Trends in 

Biochemical Sciences 26, 740-746. 

Emanuelsson, O., Nielsen, H., Brunak, S., and Von Heijne, G. (2000). Predicting 

subcellular localization of proteins based on their N-terminal amino acid 

sequence. Journal of Molecular Biology 300, 1005-1016. 

Emanuelsson, O., Nielsen, H., and Von Heijne, G. (1999). ChloroP, a neural network-

based method for predicting chloroplast transit peptides and their cleavage sites. 

Protein Science 8, 978-984. 



Manuscript VII 
   

130 
 

Ferro, M., Brugière, S., Salvi, D., Seigneurin-Berny, D., Court, M., Moyet, L., Ramus, 

C., Miras, S., Mellal, M., Le Gall, S., Kieffer-Jaquinod, S., Bruley, C., Garin, J., 

Joyard, J., Masselon, C., and Rolland, N. (2010). AT_CHLORO, a 

comprehensive chloroplast proteome database with subplastidial localization and 

curated information on envelope proteins. Molecular & Cellular Proteomics 9, 

1063-1084. 

Finkemeier, I., Laxa, M., Miguet, L., Howden, A.J., and Sweetlove, L.J. (2011). Proteins 

of diverse function and subcellular location are lysine acetylated in Arabidopsis. 

Plant Physiology 155, 1779-1790. 

Hallick, R.B., Lipper, C., Richards, O.C., and Rutter, W.J. (1976). Isolation of a 

transcriptionally active chromosome from chloroplasts of Euglena gracilis. 

Biochemistry 15, 3039-3043. 

Huang, M., Friso, G., Nishimura, K., Qu, X., Olinares, P.D., Majeran, W., Sun, Q., and 

Van Wijk, K.J. (2013). Construction of plastid reference proteomes for maize 

and Arabidopsis and evaluation of their orthologous relationships; the concept of 

orthoproteomics. Journal of Proteome Research. 12, 491-504. 

Hurd, T.R., James, A.M., Lilley, K.S., and Murphy, M.P. (2009). Measuring redox 

changes to mitochondrial protein thiols with redox difference gel electrophoresis 

(redox-DIGE). Methods in Enzymology 456. 

Hurd, T.R., Prime, T.A., Harbour, M.E., Lilley, K.S., and Murphy, M.P. (2007). 

Detection of reactive oxygen species-sensitive thiol proteins by redox difference 

gel electrophoresis: implications for mitochondrial redox signaling. Journal of 

Biological Chemistry 272, 22040-22051. 

Kapp, L.D., and Lorsch, J.R. (2004). The molecular mechanics of eukaryotic translation.  

Annual Reviews in Biochemistry 73, 657-704. 



Manuscript VII 
   

131 
 

Liere, K., and Link, G. (1995). RNA-binding activity of the matK protein encoded by the 

chloroplast trnK intron from mustard (Sinapis alba L.). Nucleic Acids Research 

23, 917-921. 

Link, A.J., Eng, J., Schieltz, D.M., Carmack, E., Mize, G.J., Morris, D.R., Garvik, B.M., 

and Yates, J.R.R. (1999). Direct analysis of protein complexes using mass 

spectrometry. Nature Biotechnology 17, 676-682. 

Link, G. (1996). Green life: Control of chloroplast gene transcription. Bioessays 18, 465-

471. 

Lopez-Juez, E., and Pyke, K.A. (2005). Plastids unleashed: their development and their 

integration in plant development. International Journal of Developmental Biology 

49, 557-577. 

Martin, W., Rujan, T., Richly, E., Hansen, A., Cornelsen, S., Lins, T., Leister, D., Stoebe, 

B., Hasegawa, M., and Penny, D. (2002). Evolutionary analysis of Arabidopsis, 

cyanobacterial, and chloroplast genomes reveals plastid phylogeny and 

thousands of cyanobacterial genes in the nucleus. Proceedings of the National 

Academy of Sciences of the United States of America 99, 12246-12251. 

Mørtz, E., Vorm, O., Mann, M., and Roepstorff, P. (1994). Identification of proteins in 

polyacrylamide gels by mass spectrometric peptide mapping combined with 

database search. Biol Mass Spectrometry 23, 249-261. 

Nickelsen, J., and Link, G. (1993). The 54 kDa RNA-binding protein from mustard 

chloroplasts mediates endonucleolytic transcript 3' end formation in vitro. Plant 

Journal 3, 537-544. 

Oelmuller, R., Dietrich, G., Link, G., and Mohr, H. (1986). Regulatory Factors Involved 

in Gene-Expression (Subunits of Ribulose-1,5-Bisphosphate Carboxylase) in 

Mustard (Sinapis-Alba L) Cotyledons. Planta 169, 260-266. 



Manuscript VII 
   

132 
 

Peltier, J.B., Cai, Y., Sun, Q., Zabrouskov, V., Giacomelli, L., Rudella, A., Ytterberg, 

A.J., Rutschow, H., and Van Wijk, K.J. (2006). The oligomeric stromal proteome 

of Arabidopsis thaliana chloroplasts. Molecular & Cellular Proteomics 5, 114-133. 

Pfalz, J., Liere, K., Kandlbinder, A., Dietz, K.J., and Oelmuller, R. (2006). PTAC2,-6, 

and-12 are components of the transcriptionally active plastid chromosome that 

are required for plastid gene expression. Plant Cell 18, 176-197. 

Pfalz, J., and Pfannschmidt, T. (2013). Essential nucleoid proteins in early chloroplast 

development. Trends in Plant Sciences 18, 186-194. 

Pfannschmidt, T., and Link, G. (1994). Separation of 2 Classes of Plastid DNA-

Dependent Rna-Polymerases That Are Differentially Expressed in Mustard 

(Sinapis-Alba L) Seedlings. Plant Molecular Biology 25, 69-81. 

Pfannschmidt, T., Ogrzewalla, K., Baginsky, S., Sickmann, A., Meyer, H.E., and Link, 

G. (2000). The multisubunit chloroplast RNA polymerase A from mustard 

(Sinapis alba L.) - Integration of a prokaryotic core into a larger complex with 

organelle-specific functions. European Journal of Biochemistry 267, 253-261. 

Qi, Y., Armbruster, U., Schmitz-Linneweber, C., Delannoy, E., De Longevialle, A.F., 

Rühle, T., Small, I., Jahns, P., and Leister, D. (2012). Arabidopsis CSP41 proteins 

form multimeric complexes that bind and stabilize distinct plastid transcripts. 

Journal of Experimental Botany 63, 1251-1270. 

Reiland, S., Finazzi, G., Endler, A., Willig, A., Baerenfaller, K., Grossmann, J., Gerrits, 

B., Rutishauser, D., Gruissem, W., Rochaix, J.D., and Baginsky, S. (2011). 

Comparative phosphoproteome profiling reveals a function of the STN8 kinase in 

fine-tuning of cyclic electron flow (CEF). Proceedings National Academy of 

Science U S A 108, 12955-12960. 

Reiland, S., Messerli, G., Baerenfaller, K., Gerrits, B., Endler, A., Grossmann, J., 

Gruissem, W., and Baginsky, S. (2009). Large-scale Arabidopsis 



Manuscript VII 
   

133 
 

phosphoproteome profiling reveals novel chloroplast kinase substrates and 

phosphorylation networks. Plant Physiology 150, 889-903. 

Schmidt, M., Gessner, G., Luff, M., Heiland, I., Wagner, V., Kaminski, M., Geimer, S., 

Eitzinger, N., Reissenweber, T., Voytsekh, O., Fiedler, M., Mittag, M., and 

Kreimer, G. (2006). Proteomic analysis of the eyespot of Chlamydomonas 

reinhardtii provides novel insights into its components and tactic movements. 

Plant Cell 18, 1908–1930. 

Schröter, Y., Steiner, S., Matthai, K., and Pfannschmidt, T. (2010). Analysis of 

oligomeric protein complexes in the chloroplast sub-proteome of nucleic acid-

binding proteins from mustard reveals potential redox regulators of plastid gene 

expression. Proteomics 10, 2191-2204. 

Soll, J., and Schleiff, E. (2004). Protein import into chloroplasts. Nature Reviews in 

Molecular and Cellular Biology 5, 198-208. 

Stauber, E.J., Fink, A., Markert, C., Kruse, O., Johanningmeier, U., and Hippler, M. 

(2003). Proteomics of Chlamydomonas reinhardtii light-harvesting proteins. . 

Eukaryotic Cell 2, 978-994. 

Steiner, S., Schröter, Y., Pfalz, J., and Pfannschmidt, T. (2011). Identification of 

essential subunits in the plastid-encoded RNA polymerase complex reveals 

building blocks for proper plastid development. Plant Physiology 157, 1-13. 

Stoebe, B., and Maier, U.G. (2002). One, two, three: nature's tool box for building 

plastids. Protoplasma 219, 123-130. 

Su, P.H., and Li, H.M. (2008). Arabidopsis stromal 70-kD heat shock proteins are 

essential for plant development and important for thermotolerance of 

germinating seeds. Plant Physiology 146, 1231-1241. 

Sugiura, M. (1992). The Chloroplast Genome. Plant Molecular Biology 19, 149-168. 



Manuscript VII 
   

134 
 

Sun, Q., Zybailov, B., Majeran, W., Friso, G., Olinares, P.D.B., and Van Wijk, K.J. 

(2009). PPDB, the Plant Proteomics Database at Cornell. Nucleic Acids Research 

37, D969-D974. 

Thimm, O., Blasing, O., Gibon, Y., Nagel, A., Meyer, S., Kruger, P., Selbig, J., Muller, 

L.A., Rhee, S.Y., and Stitt, M. (2004). MAPMAN: a user-driven tool to display 

genomics data sets onto diagrams of metabolic pathways and other biological 

processes. Plant Journal 37, 914-939. 

Tiller, K., Eisermann, A., and Link, G. (1991). The chloroplast transcription apparatus 

from mustard (Sinapis alba L.). Evidence for three different transcription factors 

which resemble bacterial sigma factors. European Journal of Biochemistry 198, 

93-99. 

Tiller, K., and Link, G. (1993). Phosphorylation and Dephosphorylation Affect 

Functional-Characteristics of Chloroplast and Etioplast Transcription Systems 

from Mustard (Sinapis-Alba L). Embo Journal 12, 1745-1753. 

Tkaczuk, K.L., Dunin-Horkawicz, S., Purta, E., and Bujnicki, J.M. (2007). Structural 

and evolutionary bioinformatics of the SPOUT superfamily of 

methyltransferases. BMC Bioinformatics 8, 73. 

Van Wijk, K.J., and Baginsky, S. (2011). Update on plastid proteomics in higher plants; 

current state and future goals. Plant Physiology doi:10.1104/pp.111.172932. 

Veith, T., Brauns, J., Weisheit, W., Mittag, M., and Büchel, C. (2009). Identification of a 

specific fucoxanthin-chlorophyll protein in the light harvesting complex of 

photosystem I in the diatom Cyclotella meneghiniana. Biochimica et Biophysica 

Acta 1787, 905–912. 

Wagner, R., and Pfannschmidt, T. (2006). Eukaryotic transcription factors in plastids – 

bioinformatic assessment and implications for the evolution of gene expression 

machineries in plants. Gene 381, 62-70. 



Manuscript VII 
   

135 
 

Wiedmann, B., Sakai, H., Davis, T.A., and Wiedmann, M. (1994). A protein complex 

required for signal-sequence-specific sorting and translocation. Nature 370, 434-

440. 

Xia, C., Wang, Y.J., Li, W.Q., Chen, Y.R., Deng, Y., Zhang, X.Q., Chen, L.Q., and Ye, 

D. (2010). The Arabidopsis eukaryotic translation initiation factor 3, subunit F 

(AteIF3f), is required for pollen germination and embryogenesis. Plant Journal 

63, 189-202. 

Yamaguchi, K., and Subramanian, A.R. (2000). The plastid ribosomal proteins. 

Identification of all the proteins in the 50 S subunit of an organelle ribosome 

(chloroplast). Journal of Biological Chemistry 275, 28466-28482. 

Yamaguchi, K., Von Knoblauch, K., and Subramanian, A.R. (2000). The plastid 

ribosomal proteins. Identification of all the proteins in the 30 S subunit of an 

organelle ribosome (chloroplast). Journal of Biological Chemistry 275, 28455-

28465. 

Yang, J.J., Schuster, G., and Stern, D.B. (1996). CSP41, a sequence-specific chloroplast 

mRNA binding protein, is an endoribonuclease. Plant Cell 8, 1409-1420. 

Yang, J.J., and Stern, D.B. (1997). The spinach chloroplast endoribonuclease CSP41 

cleaves the 3'-untranslated region of petD mRNA primarily within its terminal 

stem-loop structure. Journal of Biological Chemistry 272, 12874-12880. 

Zhang, L., Kato, Y., Otters, S., Vothknecht, U.C., and Sakamoto, W. (2012). Essential 

role of VIPP1 in chloroplast envelope maintenance in Arabidopsis. Plant Cell 24, 

3695.3707. 

 

 TABLES 

Table 1. Functional categorization and characterization of proteins from the 

phosphocellulose fraction identified by LC-ESI-MS/MS  



Manuscript VII 
   

136 
 

Identified proteins are named in the first column according to the annotation of the respective 

gene at NCBI. They are grouped into different classes written bold at the beginning of each 

group as defined in results. Proteins within each group are sorted alphabetically. Spots: 

number of the spots containing the respective protein. MapMan bin: classification groups for 

proteins according to the modified MapMan system of the plant proteome database (ppdb) 

((http://ppdb.tc.cornell.edu/dbsearch/mapman.aspx) ©Klaas J. van Wijk Lab, Cornell 

University; Sun et al. 2009) based on the MapManBins of Thimm et al. (2004); Accession: gi 

identification number and At gene accession number; cTP: possibility of a plastid transit 

peptide and the respective reliability class (RC); Reference: first identification of the protein 

in mustard by mass spectrometry. 

 

Protein spots MapMan 
bin 

Accession     ATG cTP Reference 

PEP, PAPs, pTACs 

Chloroplast RNA steem-loop 
binding protein 41a (CSP41a) 

8 27.3.99 15229384 AT3G63140 cTP 0.983 
RC 1 

Pfannschmidt 
et al. 2000 

Chloroplast RNA steem-loop 
binding protein 41b (CSP41b) 

40 27 15217485 AT1G09340 ― Schröter et al. 
2010 

Fructokinase-like 1 (FLN1) 3 29.4.1 15232415 AT3G54090 cTP 0.624 
RC 3 

Pfalz et al. 
2006 

Iron superoxide dismutase 3 
(FSD3) 

1 21.6 15237281 AT5G23310 cTP 0.945 
RC 2 

Pfannschmidt 
et al. 2000 

Plastid encoded RNA 
polymerase alpha (RpoA) 

2 27.2 7525065 AtCg00740 ― Pfannschmidt 
et al. 2000 

Plastid transcriptionally active 
chromosome 4 (pTAC4) 

4 29.3.3 18408237 AT1G65260 cTP 0.965 
RC 1 

Pfalz et al. 
2006 

Plastid transcriptionally active 
chromosome 6 (pTAC6) 

1 28.3 79318316 AT1G21600 cTP 0.802 
RC 2 

Pfalz et al. 
2006 

Plastid transcriptionally active 
chromosome 7 (pTAC7) 

1 35.2 334187898 AT5G24314 cTP 0.899 
RC 2 

Pfalz et al. 
2006 

Plastid transcriptionally active 
chromosome 10 (pTAC10) 

3 28.3 297816052 ― cTP 0.791 
RC 3 

Pfalz et al. 
2006 

Plastid transcriptionally active 
chromosome 12 (pTAC12) 

1 28.3 30686151 AT2G34640 cTP 0.563 
RC 4 

Pfalz et al. 
2006 

Plastid transcriptionally active 
chromosome 18 (pTAC18) 

1 35.2 15225202 AT2G32180 cTP 0.712 
RC 4 

Pfalz et al. 
2006 

Thioredoxin z (TRX z) 1 21.1 15230779 AT3G06730 cTP 0.858 
RC 3 

Pfalz et al. 
2006 
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UDP-N-acetylmuamoylalanyl-
d-glutamate-2,6-
diaminopimelate ligase 
(MurE) 

3 28.3 240254313 AT1G63680 cTP 0.695 
RC 3 

Pfalz et al. 
2006 

Translation 

Alpha-nascent polypeptide 
associated complex like 
protein 1 (Alpha-NAC-like 
protein 1) 

1 29.2.4 15230476 AT3G12390 ― this work 

Alpha-nascent polypeptide 
associated complex like 
protein 3 (Alpha-NAC-like 
protein 3) 

1 29.2.4 240256288 AT5G13850 ― this work 

Cytosolic ribosomal protein 
L11 (CRPL11) 

1 29.2.1.2.2.
11 

79595462 AT2G42740 ― this work 

Cytosolic ribosomal protein 
L22-2 (CRPL22-2) 

2 29.2.1.2.2.
22 

145331980 AT3G05560 ― this work 

Elongation factor 1-alpha4 
(EF1-alpha4) 

1 29.2.4 186532608 AT5G60390 ― this work 

Elongation factor tu (EFtu) 1 29.2.4 15237059 AT4G20360 cTP 0.975 
RC 1 

Pfalz et al. 
2006 

Eukaryotic translation 
initiation factor 1A (eIF1A) 

1 29.2.3 334188030 AT5G35680 ― this work 

Eukaryotic translation 
initiation factor 3 (eIF3) 

2 29.5.11.20 15225611 AT2G39990 cTP 0.797 
RC 2 

this work 

Plastid ribosomal protein L1 
(PRPL1) 

21 29.2.1.1.1.
2.1 

15229443 AT3G63490 cTP 0.937 
RC 1 

this work 

Plastid ribosomal protein L4 
(PRPL4) 

12 29.2.1.1.1.
2.4 

79317147 AT1G07320 cTP 0.826 
RC 2 

this work 

Plastid ribosomal protein L5 
(PRPL5) 

1 29.2.1.1.1.
2.5 

15234136 AT4G01310 cTP 0.828 
RC 3 

this work 

Plastid ribosomal protein L6 
(PRPL6) 

17 29.2.1.1.1.
2.6 

15220443 AT1G05190 cTP 0.495 
RC 5 

Schröter et al. 
2010 

Plastid ribosomal protein L10 
(PRPL10) 

6 29.2.1.1.1.
2.10 

15240644 AT5G13510 cTP 0.887 
RC 2 

this work 

Plastid ribosomal protein L12-
1 (PRPL12-1) 

2 29.2.1.1.1.
2.12 

15232274 AT3G27830 cTP 0.941 
RC 1 

Pfalz et al. 
2006 

Plastid ribosomal protein L12-
3 (PRPL12-3) 

2 29.2.1.1.1.
2.12 

15232276 AT3G27850 cTP 0.955 
RC 1 

this work 

Plastid ribosomal protein L14 
(PRPL14) 

1 29.2.1.1.1.
2 

297848252 ― ― this work 

Plastid ribosomal protein L15 
(PRPL15) 

2 29.2.1.1.1.
2.15 

15230931 AT3G25920 cTP 0.866 
RC 2 

this work 

Plastid ribosomal protein L18 
(PRPL18) 

1 29.2.1.1.1.
2.18 

15221153 AT1G48350 cTP 0.863 
RC 2 

this work 

Plastid ribosomal protein L21 
(PRPL21) 

2 29.2.1.1.1.
2.21 

15219695 AT1G35680 cTP 0.981 
RC 1 

this work 

Plastid ribosomal protein L24 
(PRPL24) 

2 29.2.1.1.1.
2.24 

30696487 AT5G54600 cTP 0.920 
RC 2 

this work 

Plastid ribosomal protein L29 
(PRPL29) 

1 29.2.1.1.1.
2.29 

257717595 ― cTP 0.924 
RC 2 

Pfalz et al. 
2006 
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Plastid ribosomal protein S5 
(PRPS5) 

14 29.2.1.1.1.
1.5 

15226167 AT2G33800 cTP 0.929 
RC 1 

this work 

Translation initiation factor 2 
(IF2) 

7 29.2.3 15220055 AT1G17220 cTP 0.537 
RC 3 

this work 

Translation initiation factor 3 
(IF3) 

2 29.2.3 18417644 AT4G30690 cTP 0.782 
RC 2 

this work 

tRNA/rRNA methyltransferase 
(SpoU) 

3 29.2.7 30680811 AT2G19870 ― this work 

Protein homeostasis 

Chloroplast heat shock 
cognate protein 70-2 
(cpHSC70-2) 

1 29.6 15240578 AT5G49910 cTP 0.993 
RC 1 

this work 

Protein disulfide isomerase 
like 2-1 (PDI-like 2-1) 

2 21.1 145331431 AT2G47470 ― this work 

T-complex protein 1/ 
chaperonin60 family protein 
(TCP1/cpn60) 

4 29.6 15242093 AT5G20890 ― this work 

Photosynthesis 

ATPsynthase alpha 1 1.1.4 7525018 AtCg00120 ― Schröter et al. 
2010 

ATPsynthase beta 3 1.1.4 7525040 AtCg00480 ― Schröter et al. 
2010 

Rieske Cluster 2 1.1.3 30679426 AT4G03280 cTP 0.652 
RC 3 

this work 

RubisCO activase 2 1.3.13 30687999 AT2G39730 cTP 0.888 
RC 1 

this work 

Others 

Acetyl-coenzyme A 
carboxylase carboxyl 
transferase subunit alpha 
(CAC3) 

1 11.1.1 30687368 AT2G38040 cTP 0.927 
RC 2 

this work 

Actin 1 31.1 79324605 AT2G37620 ― this work 

Cruciferin 3 (CRU3) 2 33.1 15235321 AT4G28520 ― this work 

cystein synthase 1 13.1.5.3.1 334184908 AT2G43750 cTP 0.938 
RC 1 

this work 

Fatty acid biosynthesis z 
(FabZ) 

2 11.1.5 72255615 ― cTP 0.872 
RC 2 

this work 

Malate dehydrogenase (MDH) 3 8.2.99 15232820 AT3G47520 cTP 0.911 
RC 1 

this work 

Malate synthase (MLS) 4 6.2 334187411 AT5G03860 ― this work 

Multi functional protein 2 
(MFP2) 

5 11.9.4.9 15231317 AT3G06860 ― Schröter et al. 
2010 

Myrosinase 1 16.5.1 127734  ― this work  

Phosphoserine 
aminotransferase (PSAT) 

4 13.1.5.1.2 15237069 AT4G35630 cTP 0.938 
RC 1 

this work 
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Pyrroline-5-carboxylate 
reductase (P5CR) 

3 13.2.2.3 145334418 AT5G14800 ― this work 

Serine 
hydroxymethyltransferase 1 
(SHMT 1) 

8 25.1 15235745 AT4G37930 ― Schröter et al. 
2010 

Serine 
hydroxymethyltransferase 2 
(SHMT 2) 

8 25.1 30690404 AT5G26780 ― Schröter et al. 
2010 

 

 

FIGURE LEGENDS 

Figure 1: Overview of purification procedure and protein visualisation by 2D PAGE. A) 

Protein peak fractions after HS and PC chromatography in a silver stained 7-20% SDS 

polyacrylamide gel. 20 µg of protein per lane was separated. Sizes of marker proteins are 

given in the right margin. B) Flow chart of the complete protein isolation and identification 

procedure. Arrows indicate the purification stages separated by 1D (Fig. 1A) or 2D PAGE 

(Fig. 1C). C) Protein pattern of PC peak fractions in silver stained 7.5-20% SDS acrylamide 

gels using three different pH gradients in the first dimension. The pH gradient used is 

indicated in the upper left corner of each gel and the pH range is given in detail below each 

gel. Marker sizes are given in the right margin. Dotted lines indicate the overlapping pH 

areas. 400 µg of total protein separated in each gel. D) Numbering of protein spots visualised 

in the 2D gel with pH 3-11NL for first dimension as shown in Fig.1C. Marker sizes and pH 

range are given in the margin or below the gel, respectively. 

 

Figure 2: Numbers of total, analyzed and identified spots of the PC peak fractions. 

Proteins separated in the 2D gels shown in Fig. 1 C are given in yellow boxes at the top. 

Protein groups corresponding to Table 1 are displayed below in coloured boxes. At the left 

side of each box the number of putative plastid proteins per bin being either plastid encoded 

or for which a plastid transit peptide was predicted is given. At the right side proteins without 

these properties are given. 
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Figure 3. Overview and comparison of the protein content in HS and PC fractions. A) 

Distribution of the identified proteins of the HS fractions analysed in Schröter et al. 2010 and 

classification into groups in correlation to the recent work. B) Percentage of identified 

proteins of PC peak fractions analysed in this work and classified into groups as shown in 

Table 1. C) Distribution of solely the plastid proteins of the recent PC fractions to functional 

groups according to table 1 but with an aggregation of “PEPs and PAPs” with “Other pTACs” 

and a part of “DNA and RNA” to one bin “Transcription”. 

 

Figure 4. Essential polymerase-associated proteins (PAPs) of the soluble PEP complex. 

Positions of PAPs in the 2D gel after isoelectric focussing of the PC fraction on a pH 3-11NL 

and pH 6-11 gradient. Spot identity is given at the right margin. Fragments are additionally 

indicated by an asterisk. Marker sizes and pH range are given at right margin and above or 

below the gel, respectively. The gel is silver-stained. 

 

Figure 5. Distribution of CSP41a and b spots in the pH 3-11 NL 2D-gel. CSP41a is drawn in 

yellow and CSP41b in orange. Marker sizes and pH range are given right beside and above 

the silver stained gel respectively. 

 

Supplemental Figure S1. Silver stained 2D-gels of the PC fractions with isoelectric focusing 

for the first dimension in pH gradients between 6-11, 3-11 NL and 3-10 indicated in the upper 

left corner of each gel. The second dimension is performed in a 7.5-20% SDS polyacrylamide 

gel. Spots are marked and numbered in yellow. Marker sizes and pH range are given right 

beside and below the gel respectively. 

 

Supplemental Table 1. Identified peptides from the PC fraction 
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Spots are listed in numerical order. Accession numbers of proteins belonging to the same spot 

are listed in an order starting with the highest peptide coverage. Spot nr., identification 

number of the protein containing spot on the 2D-gels (see Suppl. Fig 1). Descriptions of 

depicted proteins are given as stated in the databases (see Methods). Coverage, coverage of 

the depicted proteins by the identified peptides; calc. pI, calculated pI of the depicted proteins 

based on the protein sequences in the database; MW, calculated molecular weight based on 

the protein sequences in the databases;  z, peptide ion charge; lower case "m" in the peptide 

sequence, oxidized form of methionine; lower case "w" oxidized form of tryptophane; lower 

case "c" cystein with carbamidomethylation; lower case "k" acetylation of lysine 

 

Supplemental Table 2. Detailed characterization of proteins from the PC fraction 

identified by LC-ESI-MS/MS  

Identified proteins are given in the first column according to the annotation of the respective 

gene at NCBI. Proteins were sorted according to the MapMan bin numbering in the second 

column representing classification groups for proteins according to the modified MapMan 

system of the plant proteome database (ppdb) 

((http://ppdb.tc.cornell.edu/dbsearch/mapman.aspx) ©Klaas J. van Wijk Lab, Cornell 

University (Sun et al. 2009) based on the MapManBins of Thimm et al. (2004). Spots: 

number of spots containing the respective protein. Spot nr: identification number of the 

protein containing spot on the 2D-gels. NCBI accession: gi identification number at NCBI 

(The National Center for Biotechnology Information http://www.ncbi.nlm.nih.gov/); ATG: 

gene accession of the first matching Arabidopsis thaliana hit or (if no A. thaliana protein was 

matching) the best matching other organism and the respective A. thaliana gene accession 

determined by a protein-protein blast at NCBI in brackets; cTP: probability of a plastid transit 

peptide; MW [kDa]: calculated theoretical molecular weight in kilodalton; MW(-cTP) [kDa]: 

calculated theoretical molecular weight without chloroplast transit peptide (cTP) in 
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kilodalton; MW(-lTP) [kDa]: calculated theoretical molecular weight without cTP and 

luminal transit peptide (lTP) in kilodalton; PI: calculated isoelectric point; PI (-cTP): 

calculated isoelectric point without cTP; PI (-lTP): calculated isoelectric point without cTP 

and lTP. The last 6 parameter were provided at the related accession entry by ppdb 

(http://ppdb.tc.cornell.edu/dbsearch/searchacc.aspx). 
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Figure 1.JPEG 
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Figure 2.JPEG 
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11 General discussion 

 

For a detailed understanding of processes during redox signal induced plastid 

gene expression the analysis of the nucleotide binding plastid sub-proteome is 

of particular interest. This work combines the analysis of the knowledge about 

redox signal transmission and its influence on plastid gene expression as well 

as classical biochemical methods with modern analytical tools for a fundamental 

study of the plastid gene expression machinery.  

 

11.1 Redox signal triggered gene expression 

 

The review article Pfannschmidt et al. 2008, Dietzel et al. 2008 and Pfalz et al. 

2012 highlight the actual ken about chloroplast to nucleus communication and 

vice versa to date as well as the influence on nuclear and plastid gene 

expression. As discussed there the knowledge of these complex processes are 

marginal and need to be investigated in detail. Pfannschmidt et al. 2008 

describes the generation of a redox state caused by imbalances of the PET and 

acclimation responses in terms of STR and LTR. Furthermore the role of the PQ 

as signal giver and the STN7 kinase as signal sensor in redox signal 

transmission is discussed. Putative phosphorylation cascades and an 

involvement of thioredoxins in redox signal mediation to the plastid gene 

expression machinery are postulated and the redox signal transduction to the 

nucleus is discussed (Fig. 2, Pfannschmidt et al. 2008). An influence of redox 

signals on primary nuclear and plastid target genes are part of this review as 

well because of their importance for understanding cellular processes and 

transduction pathways. The communication within plastids and plant cells 

highlighted here is complex and represents a network of different signals of 

various origins, signal transducing cascades and responding elements. A model 

for the integration of various signals in plant cells is given in this review too (Fig. 

3, Pfannschmidt et al. 2008). Experimental approaches for the generation of a 

redox state of the PQ pool by inhibitor treatment, the use of knock out mutants 

or defined illumination conditions are discussed in detail and base for further 

studies within this work as referred in the introduction. 
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Dietzel et al. 2008 represents a review contributing to the book “The 

Chloroplast”. It treats of the retrograde signaling between plastids and nucleus 

covering the examined fields to date. This comprises the plastid signaling 

depending on plastid gene expression and on pigment biosynthesis and the 

crosstalk of both signals. Furthermore the interaction of photo-morphogenesis 

related signals induced by whether developing plastids or light and its 

interaction. Most important for the context of this work is the disquisition of 

signals depending on photosynthesis and reactive oxygen species and in 

special these evolving from the PET (Dietzel et al. 2008).  

Pfalz et al. 2012 includes recent advances and findings concerning the redox 

signal generation and mediation. It also considers the publications Steiner et al. 

2009, Schröter et al. 2010 and Steiner et al. 2011 and comprehends the new 

investigations into existing models. It focuses on the relation of physiological 

redox signals to the environment and signal transduction pathways to nucleus 

gene expression. 

As discussed in these reviews the redox signal mediation to the adjusting gene 

expression machineries in plastids and nucleus is complex and most likely 

represents a network of several signal cascades interacting with each other. 

The knowledge about components of redox signal transmission as well as 

elements directly influencing the expression of target genes is marginal. 

 

11.2 LTR in mustard cotyledons 

 

For a better understanding of these adaption processes the plastid gene 

expression in dependency of a defined redox state was examined within this 

work. As prefatory described an experimental approach was established 

inducing a defined PQ redox state in mustard (Steiner et al. 2009; Schröter et 

al. 2010). Mustard cotyledons were shown to be ideal objects for this purpose. 

They deliver that high amount of biomass what is needed for the complex 

biochemical purification procedures used here. The harvest of 7 days old 

mustard cotyledons of 1 culture soil plate of 30x50 cm delivers between 150 

and 250 g plant material. After plastid isolation and HS-Chromatography about 

4 mg protein remain and about 1.6 mg protein after PC-chromatography. For 

one 2D BN-PAGE 140 µg of HS protein fraction is necessary and for one 2D gel 
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with isoelectric focusing (IEF) as first dimension 400 µg PC protein fraction were 

used. With Arabidopsis a vast multiple of culture soil plates and growing time 

has to be invested for getting similar amounts of cotyledon biomass because of 

the small size and slower growing of this species. On the other hand there is 

only a limited knowledge about S. alba genome, proteome and metabolic data 

available. But the close relationship of S. alba to A. thaliana is a big advantage 

for comparing new analytical data of mustard with known facts of Arabidopsis 

and other Brassicales. That enables the identification of mustard proteins and 

the attribution and inclusion into established biological systems and pattern. 

In Steiner et al. 2009 the responses of mustard cotyledons to a PS-light and 

light switch induced redox state were analyzed via Chlorophyll fluorescence 

measurement and compared to A. thaliana. Mustard displays a typical and 

similar acclimation pattern as A. thaliana and is therefore comparable with the 

photosynthetic performance of former studies of A. thaliana (Pfannschmidt et al. 

1999a; Piipo et al. 2006; Wagner et al. 2008; Fig. 1 and Table 1, Steiner et al. 

2009). The redox control at the psaA promoter and the usage of the promoter 

was studied in a primer extension assay (Fig. 3 Steiner et al. 2009). In contrast 

to A. thaliana, with two 5’-transcript ends for the psaA mRNA, S. alba contains 

only one end (Summer et al. 2000; Fey et al. 2005; Fig. 3, Steiner et al. 2009). 

The transcript accumulation in dependency to the used light regime is 

consistent with earlier studies and displays the redox regulation of the psaA gen 

in mustard at this single transcript initiation site (Fig. 3, Steiner et al. 2009). 

 

11.3 Characterization of the HS protein fractions 

 

The present publications, Steiner et al. 2009, Schröter et al. 2010, Steiner et al. 

2011 and Schröter et al. 2014, describe the methodology for the preparation of 

the nucleotide binding sub-proteome of S. alba cotyledons and its analysis and 

identification of the single proteins. For Steiner et al. 2009 and Schröter et al. 

2010 mustard cotyledons were subjected to a PSI-II or PSII-I light-regime during 

growth the other studies were performed with white light plants. Isolated intact 

mustard plastids were lysed and subjected to HS chromatography. The 

resulting protein fraction may contain impurities caused by contaminations of 

other cell compartments. To define the kind and level of contamination several 
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protein fractions at different purification steps within the used procedure were 

tested for their composition of cellular compartments (Schröter et al. 2010). The 

tested aliquots of total cell extract (TL), lysate of intact chloroplasts (CL), peak 

fraction after HS chromatography (HS) and a cell nuclei fraction (N) were 

subjected to western immuno-analysis. The used antisera were directed against 

marker proteins for plastids and other cell compartments. The isolated 

chloroplast fractions were shown to be free of cytosolic and nuclear proteins but 

contain a small amount of mitochondria and tonoplast contaminations caused 

by co-purification with chloroplasts via sucrose gradient centrifugation. Also 

obviously was a disappearance of RubisCO subunits and LhcII by comparing 

the CL with the HS fraction on the Ponceau S stained blotting membrane and 

only traces of RbcS which remain detectable via immuno-assay. This and the 

substantial differences in the protein band pattern between CL and HS fraction 

on stained blotting membrane point to a selective enrichment of nucleic acid-

binding proteins (Fig.3, Schröter et al. 2010). The excellent quality of prepared 

fractions was fundamental for further examinations including further 

chromatography steps in Schröter et al. 2014. 

The protein pattern of the isolated HS fractions is visible on silver stained SDS 

PAGE gels (Fig. 2, Steiner et al. 2009; Fig. 1, Schröter et al. 2010; Fig. 1, 

Schröter et al. 2014). A comparison of protein pattern between PSI-II and PSII-I 

light fractions in these gels is hindered by the high quantity of different proteins 

within. Light–quality effects on single proteins may be masked by other proteins 

of the same size (Steiner et al. 2009). The characterization of the psaA and 

psbA promoter binding efficiency of the HS fractions in an EMSA approach 

offers any differences between PSI-II and PSII-I acclimated plastids (Fig. 4, 

Steiner et al. 2009). Complemented by Southwestern experiments with the 

same fractions 20-30 different proteins were shown to interact with the promoter 

in a Light-quality dependent way (Fig. 5, Steiner et al. 2009). Hence an 

influence of the redox state on promoter binding capacity was demonstrated 

there. The effects of differential phosphorylation of proteins on the promoter 

binding behavior between PSI-II and PSII-I fractions was tested as well here 

(Steiner et al. 2009). As incipient described an involvement of kinases in redox 

signal transmission was already shown for STN7 and CSK (Bonardi et al. 2005; 

Puthiyaveetil et al. 2008). Western-immuno-assays with regards to short and 
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long term effects on the phosphorylation pattern offered Light-quality dependent 

differences on around 40 proteins also in a time dependent manner here (Fig. 6 

and Fig. 7, Steiner et al. 2009). This high number of influenced proteins 

confirms the involvement of phosphorylation cascades on plastid gene 

expression possibly as widespread mechanism (Steiner et al. 2009). Obviously 

the general phosphorylation pattern between the PSI-II and PSII-I fractions is 

similar concerning all three amino acids tested, thus representing the genuine 

phosphorylation state of both fractions. The majority of the phosphorylation sites 

detected seem not to be involved in LTR regulation. Nevertheless three 

candidates for redox responsive factors were found, showing differences in 

phosphorylation pattern and promoter binding activity (Steiner et al. 2009). The 

endogenous kinase activity is quite different between PSI-II and PSII-I HS 

fractions and display differential phosphorylated proteins in both fractions, 

pointing to varying kinase activities and accessibilities of phosphorylation sites 

(Fig. 8, Steiner et al. 2009). In run-on transcription assays was shown that 

kinase inhibition and thiol reduction together have a strong influence on psaA 

and psbA transcription (Fig. 9, Steiner et al. 2009). Thus phosphorylation and 

dithiol sites were necessary for plastid transcriptional regulation (Steiner et al. 

2009).  

Taken together in Steiner et al. 2009 was shown that the isolated HS fractions 

contain numerous small DNA binding proteins or even plastid psaA and psbA 

promoter binding proteins. Furthermore any proteins within these fractions are 

influenced or controlled by phosphorylation also in a Light-quality dependent 

manner. These findings confirm the existence of a complex network of 

interacting proteins for signal transmission to plastid gene expression. This 

might include the action of several kinases, like STN7 and CSK, and post-

translational modifications, like dithiol reduction (Steiner et al. 2009). 

 

11.4 2D BN-PAGE 

 

The more detailed analysis of the protein content within the HS fractions was 

performed using 2D BN-PAGE (Schröter et al. 2010; Steiner et al. 2011). The 

visualization of the isolated HS-protein fractions on 2D BN-gels displayed ten 

oligomeric protein complexes between 1000-250kDa and eleven smaller protein 
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complexes or even spots below 200kDa (Fig.2 and Table1, Schröter et al. 

2010). By using different polyacrylic gradients for first dimension the whole 

fraction content was obviously (Fig.2, Schröter et al. 2010). For Steiner et al. 

2011 only the second oligomeric complex was of interest containing the PEP 

complex and its associated proteins as discussed later. 

For protein identification of the single spots a tryptic digestion and ESI-MS/MS 

measurement was conducted. The identification of measured peptides 

succeeded using a Brassicales Database. The sequence homology between S. 

alba and Arabidopsis as well as other Brassicales was shown to be sufficient for 

the identification of mustard proteins. Thus mustard could be established as 

additional model plant to Arabidopsis especially for the application of complex 

biochemical analysis and purification schemes and MS studies (Schröter et al. 

2010; Steiner et al. 2011; Schröter et al. 2014). 

The investigation of effects of photosynthetic light acclimation on the protein 

composition of plastids was of special interest in Schröter et al. 2010. Any 

differences in the protein pattern generated by the illumination systems PSI-II 

and PSII-I should be obviously on 2D BN-gels as well. An effect was visible for 

the proteins of spot 11 of the 2D BN-gels as an enrichment in PSII-I fractions 

(Fig. 2, Schröter et al. 2010). It contains the fructose-1,6-bisphosphatase and 

the translation elongation factor EF-tu (Table 1, Schröter et al. 2010). It was 

demonstrated before that redox control has a strong effect on plastid translation 

and possibly EF-tu is involved in conversion of this signal (Trebitsh et al. 2000; 

Trebitsh and Danon 2001; Schröter et al. 2010). 

Further differences are not visible within these gels confirming redox signal 

mediation by phosphorylation or other posttranslational modifications instead of 

up or down regulation of the abundance of a single protein. Therefore 

preparations of further studies are performed with white light cotyledons 

(Steiner et al. 2011; Schröter et al. 2014). 

 

11.5 PC chromatography 

 

Plenty of contaminating proteins in the HS fractions exacerbate the analysis of 

gene expression related proteins as discussed later here in detail. Many 

photosynthetic and metabolic proteins were enriched by HS chromatography 
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which tends to cover low abundant proteins and have to be removed (Table 1, 

Schröter et al. 2010). The use of PC for isolating the nucleotide binding sub-

proteome of mustard plastids in addition to HS chromatography provides a 

potent protein fraction, containing the essential elements of plastid gene 

expression (Schröter et al. 2014). PC chromatography is a well-tried method for 

separating nucleotide binding enzymes like RNA polymerases (Burgess et al. 

1969; Bottomley et al. 1971; Tiller and Link 1993). Thus it is not a new tool in 

protein analysis but in combination with 2D-gelelectrophoresis and modern 

mass spectrometrical analysis the ancient method gets a new position. 

The comparison of HS fractions and PC fractions in a silver stained 

polyacrylamide gel offered a different protein pattern with an evident reduction 

as well as enrichment of proteins (Fig.1 A, Schröter et al. 2014). An overview of 

the whole PC Sample in 2D-gels was achieved by using a pH range from 3-

11NL (non linear) for the isoelectric focussing of proteins in the first dimension 

and a gradient polyacrylamide gel as second dimension (Fig.1 C, Schröter et al. 

2014). The non linear pH gradient of the gel tends to an accumulation of 

proteins at the outer ranges and poorly resolved spots in these areas. 

Overlapping pH gradients for the first dimension between pH 3-10 and pH 6-11 

solved this problem and the whole protein content of the PC fractions was 

displayed (Fig. 1 C, Schröter et al. 2014). Drawing the overlapping 2D-gels 

together a pattern of 1079 spots is visible, representing the nucleotide binding 

sub-proteome of mustard plastids (Fig. 1 C and D and supplemental Fig. 1, 

Schröter et al. 2014). Many spots are doubled representing the same protein on 

different gels, cognoscible on the detailed spot pattern of overlapping gel areas 

(Supplemental fig. 1, Schröter et al. 2014). Altogether 284 spots can be 

selected visually as analysable with a sufficient protein amount for the 

identification via the used mass spectrometry method. Altogether 58 different 

proteins were identified in 180 of the strongest spots by using again a 

Brassicales database (Table 1 and Supplemental table 1, Schröter et al. 2014). 

About 62% of all proteins of this work were first identified in S. alba by a mass 

spectrometry approach. Totally 32 protein were first detected in the HS fractions 

of Schröter et al. 2010 and 33 more in the PC fractions of Schröter et al. 2014. 

The identified proteins may be categorized as defined in Schröter et al. 2014. 

This enables the comparison of the results of both publications, Schröter et al. 
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2010 and Schröter et al. 2014. The classification is based on the modified 

MapMan bin system (Thimm et al. 2004) of the Plant Proteomics Data Base 

(PPDB) (Sun et al. 2009). Proteins of Schröter et al. 2014 were sorted 

according to these bins and further on dedicated to 5 functional groups. The first 

group contains the components of the soluble PEP complex as defined in 

Steiner et al. 2011 and described following. Two more proteins were unified with 

the existing PAPs because of their obviously importance for transcription in 

2013 (Pfalz and Pfannschmidt 2013). A number of pTACs with additional 

functions in gene expression but not directly associated to the soluble PEP 

complex as well as the CSP41a and b protein remain and were dedicated to 

this group as well. This first group comprises transcription and transcript related 

proteins as well as additional RNA and DNA related proteins and is called “PEP, 

PAPs and pTACs”. The other proteins may be grouped into translation 

associated proteins (Translation), proteins involved in protein homeostasis, 

photosynthesis or belong to the miscellaneous group “others”. The results of 

Schröter et al. 2010 were already grouped in Schröter et al. 2014 for 

comparison of HS and PC fractions (Fig. 3, Schröter et al. 2014).  

 

11.6 PEP, PAPs and pTACs 

 

The main focus of this work was on gene expression related proteins. As 

mentioned earlier the transcriptional PEP complex and its associated proteins is 

depicted in complex 2 of the 2D BN-gels without contaminations of other 

complexes migrating in this gel area during first dimension (Schröter et al. 2010; 

Steiner et al. 2011). About 24% of the HS fraction comprised PEP associated 

and transcription related proteins grouped into “PEP, PAPs and pTACs” (Fig. 2 

and Table 1, Schröter et al. 2010; Fig. 3, Schröter et al. 2014). Most of the PEP 

components identified in Schröter et al. 2010 were already known but one new 

PAP was identified within this work (Schröter et al. 2010). The protein of spot 

2.7 was already described as compound of the TAC-fraction and the PEP 

complex but first identified here as Thioredoxin z (TRXz) and later on 

established as PAP10 (Pfalz et al. 2006; Arsova et al. 2010; Fig. 2 and Table 1, 

Schröter et al. 2010; Steiner et al. 2011). Arsova et al. (2010) ascertains the 

interaction of TRXz with, PAP6, another PEP associated protein. This pfkB-
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carbohydrate kinase family protein, fructokinase-like 1 (FLN1), is present in the 

HS- and PC-fractions too and a well known member of the PEP complex since 

Suzuki et al. (2004) identified in A. thaliana. Recently it was shown that 

PAP4/FSD3 and the TRXz of PAP10 interact with a novel thioredoxin in higher 

plants, AtECB1, for regulation of plastid gene expression and development (Yua 

et al. 2014). 

In Steiner et al. 2011 independent HS preparations of this complex were 

compared to highly purified PEP preparations after glycerol gradient 

centrifugation. The protein bands which were consistent on SDS-PAGE gels of 

both preparations were regarded to be permanent PEP subunits (Fig.1, Steiner 

et al. 2011). These 15 proteins comprise the basic PEP composition of the PEP 

subunits RpoC2, RpoB, RpoC1 and RpoA and essential PEP associated 

proteins (PAPs), namely PAP1 (pTAC3), PAP2 (pTAC2), PAP3 (pTAC10), 

PAP4 (FSD3), PAP5 (pTAC12/HEMERA), PAP6 (FLN1), PAP7 (pTAC14), 

PAP8 (pTAC6), PAP9 (FSD2) and PAP10 (TRXz) (Table 1, Steiner et al. 2011). 

The indispensability of PAPs for PEP activity was confirmed by phenotypic 

characterisation of A. thaliana knock-out mutants of the respective gene 

(Schröter et al. 2010; Steiner et al. 2011). All PAP knock-out plants show an 

albino or pale green phenotype caused by severe defects in chloroplast 

development (Steiner et al. 2011). Nevertheless they were able to survive on 

sugar supplemented medium and the gene knock out is not lethal in general. As 

mentioned before the PAPs were supplemented by two more subunits PAP11 

(MurE-ligase) and PAP12 (pTAC7), displaying an albino phenotype in the 

respective knock-out mutants too (Pfalz and Pfannschmidt 2013). 

The PEP subunit content of the PC fractions of Schröter et al. 2014 reflects the 

different isolation spectra of the chromatographic methods. Clearly cognizable 

is the massive reduction of proteins above approximately 80 kDa in the PC 

fractions which tends to a reduction of almost all of the higher molecular weight 

PEP subunits and PAPs to unidentifiable amounts (Fig. 4 and Table 1, Schröter 

et al. 2014). Only RpoA and PAPs from PAP12 to PAP3 remain identifiable in 

this work whereas the HS fractions contain the whole PEP complex in sufficient 

amounts (Fig. 2 and Table 1, Schröter et al. 2010; Fig 1. Steiner et al. 2011; 

Fig. 4 and Table 1, Schröter et al. 2014). An improvement of the biochemical 
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purification procedure is planned to solve the size cut-off problem through 

chromatography.  

The CSP41a and b proteins were handled separate here because of their vast 

amount in HS and PC fractions and their variability. Detected first as 

eponymous chloroplast RNA stem-loop binding protein of 41 kDa in spinach, it 

was shown to be RNA-binding and ribosome associated in Chlamydomonas 

reinhardtii as RAP38 and RAP41 as well as in A. thaliana named CSP41a and 

CSP41b (Yang et al. 1996; Baker et al. 1998; Bollenbach and Stern 2003a and 

b; Yamaguchi et al. 2003; Bollenbach et al. 2004; Beligni and Mayfield 2008). 

CSP41a and b were also detected in isolates of the PEP-complex as one of the 

most abundant component (Pfannschmidt et al. 2000). They are involved in the 

gene expression process in general and are thus important for transcriptional 

and translational processes (Bollenbach et al. 2009; Qi et al. 2012). Here we 

dedicate both proteins to the group of PEP, PAPs and pTACs. In former 

investigations and the HS fractions of Schröter et al. 2010 CSP41a and b 

showed a pattern of broad protein bands on acrylamide gels pointing to the 

formation of diverse complexes of different sizes (Peltier et al. 2006; Fig. 2, 

Schröter et al. 2010; Qi et al. 2012). In the PC fractions of Schröter et al. 2014 

we identified CSP41a in 8 and CSP41b in 40 spots of diverse sizes and 

isoelectric points (Fig. 5, Schröter et al. 2014). Thereby both form a defined spot 

pattern which is congruent in the replicates of the 2D-gels prepared for this 

work. This indicates massive post-translational modifications and degradations 

to CSP41a and b. 

 

11.7 Translation associated proteins in HS and PC fractions 

 

The largest difference between HS and PC fractions is obviously within the 

translation associated proteins. The biggest amount of all identified proteins in 

the PC fractions is dedicated to the translational processes with 43% of all 

proteins (Fig. 3 and Table 1, Schröter et al. 2014). Compared to only 7% after 

HS chromatography a massive enrichment of translation related proteins 

occurred (Table 1, Schröter et al. 2010; Fig. 3, Schröter et al. 2014). Thereby 

ribosomal subunits contribute most with about 60% of all proteins of this group 

in PC fractions (Table 1, Schröter et al. 2014). The central element of the 
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organellar gene expression machinery is the 70S ribosome. Ribosomal proteins 

contain nucleotide binding structures for their contact to the different structural 

or gene expression relevant RNA types. Hence they are ideal adhesion partner 

for the used column materials. The identification of eukaryotic 80S ribosomal 

proteins in plastid fractions is formerly documented during examination of 

stroma protein fractions, recorded in the ppdb (http://ppdb.tc.cornell.edu/) as 

part of a study of Olinares et al. 2010. Thus the identification of such cytosolic 

compounds was not surprising. The plastid isolation procedure usually excludes 

the cytosole but plastid membrane attached particles, like the tonoplast 

membrane, proteins involved in cytosolic gene expression close to the organelle 

or assistants of protein translocation across the chloroplast membrane, remove 

only hardly during plastid isolation and remain in the fractions (Schröter et al. 

2010). Compared to only two identified ribosomal proteins with one of them 

cytosolic in Schröter et al. 2010 the 14 plastid and 2 cytosolic ribosomal 

subunits of the PC fractions display the immense enrichment of nucleotide 

binding proteins through the combination of both chromatographic steps (Table 

1, Schröter et al. 2010; Table 1, Schröter et al. 2014). 

Further translation associated proteins were identified here too. Divers plastid 

and cytosolic translation initiation factors (IF) were found in the PC fractions 

(Table 1, Schröter et al. 2014). The plastid translation elongation factor Tu (EF-

Tu) was found in the HS and the PC fractions (Table 1, Schröter et al. 2010; 

Table 1, Schröter et al. 2014). Additionally the cytosolic EF1-alpha4 was found 

among the PC proteins (Table 1, Schröter et al. 2014). The cytosolic translation 

factors as well as the SpoU methylase and the two Alpha-NAC-like proteins 

identified here represent most likely cytosolic contaminations, which are easy to 

enrich because of their nucleotide binding nature (Schröter et al. 2014). An 

exception is the eukaryotic translation initiation factor 3f (eIF3f) found in PC 

fractions (Table 1, Schröter et al. 2014). This original cytosolic subunit of the 

eIF3 is involved in plenty regulatory events of the basic cell development which 

exceed its classic function as translation factor (Xia et al. 2010). Moreover this 

cytosolic factor contains a cTP and is most probably a real plastid protein 

beside it was previously found in plastid nucleoids (Huang et al. 2013; Schröter 

et al. 2014). 
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11.8 Protein homeostasis related proteins 

 

Closely connected to translation is the generation of the right protein folding. 

Thereby molecular chaperons like heat shock proteins play a crucial role but 

mostly comprising additional functions as well. Also protein degrading proteins 

belong to the group “protein homeostasis” as found in the HS fractions 

(Schröter et al. 2010). An amount of 13% proteins were identified dedicated to 

protein homeostasis among the HS proteins and only 5% remain after PC 

chromatography (Table 1, Schröter et al. 2010; Table 1 and Fig. 3 Schröter et 

al. 2014). This reduction displays the enforced selective purification of 

nucleotide binding proteins via the second chromatographic step. Any of these 

proteins represent clear cytosolic compounds which are presumably co-purified 

with the cytosolic ribosomes attached to the nascent polypeptide chains as they 

emerge from the ribosome. There are several cytosolic chaperones binding in 

that manner during translation proceeds like Hsp70, Hsp40 and TCP1 (Frydman 

et al. 1994; McCallum et al. 2000; Etchells et al. 2005). 

 

11.9 Proteins involved in photosynthesis 

 

A number of photosynthesis related proteins were identified in Schröter et al. 

2010 (Table 1). Totally 28% of all proteins of the HS fractions may be dedicated 

to this group (Table 1, Schröter et al. 2010; Fig. 3, Schröter et al. 2014). These 

proteins are constitutional compounds of plastid samples and represent 

contaminants which co-purify because of their large amount in the starting 

material and/or affinity to the negatively charged column material. The amount 

of photosynthesis related proteins could be reduced by PC chromatography to 

only 7% (Fig. 3, Schröter et al. 2014). The subunits of the chloroplast ATP 

synthase are observed after HS and PC protein purification (Schröter et al. 

2010; Schröter et al. 2014). They are good to enrich with the used 

chromatographic methods because of their ATP binding nature. But additionally 

they are also components of the nucleoids of A. thaliana leafs prepared by 

Huang et al. (2013). Same is applicable for the RubisCO activase with an 

ATPase function and linked nucleotide binding domain. The RubisCO activase 

and also the Rieske protein was detectable in nucleoid preparations of A. 
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thaliana before (Huang et al. 2013). The Lhc proteins, the RubisCO and some 

other calvin cycle proteins of the HS fractions were removed by PC 

chromatography (Schröter et al. 2010; Schröter et al. 2014). 

 

11.10 Other identified proteins in HS and PC fractions 

 

The remaining proteins have miscellaneous functions in plants and were 

dedicated to one group called “others”. Also within these proteins a strong 

reduction is noticeably between 28% HS and 22% PC proteins (Table 1, 

Schröter et al. 2010; Table 1 and Fig. 3, Schröter et al. 2014). Most of the 

proteins of this group in Schröter et al. 2010 belong to the vacuolar ATP 

synthase which has an apparent affinity to the HS column material like the 

chloroplast ATP synthase too. Nevertheless all of these vacuolar ATP synthase 

subunits were removed by PC chromatography (Table 1, Schröter et al. 2010; 

Table 1, Schröter et al. 2014). Also removed by PC chromatography are the 

chloroplastic phospho-glucose-isomerase, the general regulatory factors (GF14) 

and the 2-Cys peroxiredoxins found in Schröter et al. 2010 (Table 1, Schröter et 

al. 2010; Table 1, Schröter et al. 2014). 

Five of the 13 “other” proteins of Schröter et al. 2014 contain a predicted cTP 

and thus represent true plastid proteins. Namely these are MDH, CAC3, FabZ, 

cysteine synthase and PSAT (Table 1, Schröter et al. 2014). They seem not to 

be directly involved in gene expression but all five were formerly identified in 

nucleoid fractions of A. thaliana chloroplasts (Huang et al. 2013). MDH, CAC3, 

PSAT and the cysteine synthase are somehow involved in processes which 

require ATP, NAD+ or PLP for their reactions and thus whether inoculate a 

domain for binding well to the phosphate groups of the used column material or 

even show an affinity to nucleotides and acidic compounds caused by their 

whole nature. 

The nine remaining proteins with different functions seem to be contaminations 

of other compartments since they lack a cTP. However five of them where 

identified in plastid fractions before. The MFP2 was previously found in the S. 

alba plastids, A. thaliana Stroma and even isolated nucleoids (Schröter et al. 

2010, Huang et al. 2013, Nishimura et al. 2013). The Myrosinase was identified 

in Arabidopsis plastoglobules, thylakoids, stroma and nucleoids (Giacomelli et 
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al. 2006; Zybailov et al. 2008; Zybailov et al. 2009; Lundquist et al. 2012, Huang 

et al. 2013, Nishimura et al. 2013). SHMT 1 and 2 are previously found in 

plastids and plastid stroma fractions and SHMT 1 additionally in nucleoids and 

plastoglobules (Gulas et al. 2006, Huang et al. 2013; Lundquist et al. 2013; 

Nishimura et al. 2013). Finally CRU3 was shown to be compound of 

Arabidopsis plastoglobules (Lundquist et al. 2013). Thus a plastid localisation of 

these five proteins can’t be excluded as well as an involvement of some of them 

in gene expression caused by their identification in plastid nucleoids. 

Disregarding the potential affiliation to nucleoids MFP2, SHMT 1 and 2 and 

CRU3 are possibly nucleotide binding because of the phosphate residue 

containing energy carrier they use. 

Only three identified proteins of Schröter et al. 2014 remain as real 

contaminants without cTP and any hint for chloroplast localisation. P5CR with a 

NAD(P) binding domain, MLS and Actin as structure element with high affinity to 

ATP. These proteins as part of HS fractions in unidentifiable amount were 

enriched through PC chromatography to a sufficient quantity. 

 

11.11 Proteins with plastid affiliation 

 

The transit peptide (TP) as attribute of proteins imported into plant cell 

organelles and essential for the passage across organelle membranes gives us 

a hint for the protein localisation. It is detectable with prediction programs like 

TargetP (Emanuelsson et al. 2000). A plastid TP was predicted for 25 of the 47 

identified proteins of the HS fraction and 36 of the 58 identified proteins of the 

PC fractions contain a TP as well. Further on 7 of the HS and 4 of the PC 

proteins were plastid encoded (Schröter et al. 2010; Schröter et al. 2014). This 

denotes a high degree of plastid proteins in the isolated fractions. The exclusion 

of all probably non plastidic proteins as contaminations will turn the picture 

further on. For the results in Fig. 3 C of Schröter et al. 2014 only proteins with 

plastid transit peptide (cTP) or plastid origin were used. At the end 30% of the 

identified proteins of PC fractions with clear plastid affiliation are involved in 

transcription. As implicated in translational processes 45% were identified, 2% 

are involved in protein homeostasis, 10% are photosynthetic and 13% other 

proteins. Unfortunately this target sequences are not that similar, varying in 
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length and amino acid composition. Thus some potentially plastid proteins were 

predicted to belong to mitochondria or even as not-targeted to any organelle. 

Problems occur also concerning dual targeting proteins with transit peptides for 

both, mitochondria and plastids. Therefore the number of real plastid proteins is 

most probably higher than calculated. 

 

11.12 Conclusion 

 

This work participates on the elucidation of the plastid redox signal transmission 

to plastid gene expression as fundamental process in plant acclimation to 

environmental changes. An effect of plastid redox signals on the expression of 

essential plastid genes was examined as well as an involvement of 

phosphorylation and thioredoxin mediated redox signal transduction. Within this 

work a fundamental contribution to the investigation of the plastid gene 

expression machinery and its constituents was achieved by establishing 

mustard as additional model organism with huge advantages for complex 

biochemical approaches.  
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Abstract 

 

The actual keen about redox signal development at the plastid photosynthetic 

apparatus, transmission and the reply to the signal was highlighted by the 

contribution of three review article to this work. Pfannschmidt et al. 2008 

summarizes short and long term acclimation responses (STR and LTR 

respectively) to redox signals of the Plastoquinone (PQ) pool and the 

involvement of putative phosphorylation cascades and thioredoxins as well as 

the influence of the redox state on primary target genes in plastids and nucleus. 

Further on experimental approaches for the generation of a defined redox state 

at the photosynthetic electron transport (PET) chain was discussed. Dietzel et 

al. 2008 reviews the different types of retrograde signals between plastids and 

nucleus as well as the complexity and interaction of the signaling cascades and 

networks and in Pfalz et al. 2012 the environmental influences on gene 

expression and recent findings within plastid redox signaling were discussed. 

For a detailed investigation of the adaption of plastid gene expression 

responding to plastid redox signals the gene expression machinery of 

chloroplasts itself was studied. An experimental approach was used for the 

generation of a defined redox signal in mustard cotyledons, the following 

isolation of its chloroplasts and further on the nucleotide binding sub-proteome 

using heparin-Sepharose (HS) (Steiner et al. 2009; Schröter et al. 2010). The 

characterization and comparison of mustard cotyledons acclimated to redox 

signal inducing Light-qualities with Arabidopsis thaliana cotyledons was 

important for the integration of new findings within Sinapis alba into established 

models (Steiner et al. 2009). An effect on the transcriptional regulation of the 

two plastome-encoded genes psaAB and psbA was studied here concerning 

promoter recognition and specificity (Steiner et al. 2009). The impact of 

phosphorylation events on gene expression was surveyed and confirmed by 

determination of the phosphorylation state of the HS fractions, the endogenous 

kinase activity and the cooperative influence of kinase activity and thiol redox 

state on Chloroplast transcription (Steiner et al. 2009).  

HS proteins fractions contain a high degree of DNA and especially psaA and 

psbA binding proteins which were identified using mass spectrometry and 

Brassicales databases (Steiner et al. 2009; Schröter et al. 2010; Steiner et al. 
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2011). Special emphasis was on the analysis of the essential subunits of the 

plastid-encoded plastid RNA-polymerase (PEP) which was well to prepare by 2 

dimensional (2D) blue native (BN) gel electrophoresis (Schröter et al. 2010; 

Steiner et al. 2011). The degree of proteins involved in gene expression was 

strongly increased by the use of a second chromatographic step with 

Phosphocellulose (PC) additional to HS (Schröter et al. 2014). Visualization and 

identification of this nucleotide binding sub-proteome was the aim of the last 

publication included into this work giving access to a precise view on the gene 

expression related proteome of mustard plastids (Schröter et al. 2014). 
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Zusammenfassung 

 

Drei review Artikel beleuchten das aktuelle Wissen über die 

Redoxsignalentwicklung im plastidären Photosyntheseapparat, die 

Signalübermittlung und –beantwotung. Pfannschmidt et al. 2008 fasst Kurzzeit- 

und Langzeitantworten auf Redoxsignale des Plastochinonpools zusammen 

und darüberhinaus die Einbeziehung von Phosphorylierungskaskaden und 

Thioredoxinen sowie den Einfluss des Redoxstatus auf primäre Zielgene in 

Plastiden und dem Zellkern. Desweiteren wurden experimentelle Ansätze für 

die Erzeugung eines definierten Redoxstatus in der photosynthetischen 

Elektronentransportkette diskutiert. Dietzel et al. 2008 fasst die verschiedenen 

Typen retrograder Signale zwischen Plastiden und Zellkern zusammen sowie 

die Komplexität und Interaktion der Signalkaskaden und –netzwerke und in 

Pfalz et al. 2012 werden die Umwelteinflüsse auf die Genexpression und 

aktuelle Erkenntnisse über Redoxsignale diskutiert.  

Für eine detailierte Untersuchung der Genexpressionsadaption als Antwort auf 

plastidäre Redoxsignale wurde die Genexpressionsmaschinerie der 

Chloroplasten direkt studiert. Ein definiertes Redoxsignal wurde in 

Senfkeimlingen generiert, anschließend die Chloroplasten und schließlich die 

nukleotidbindenden Proteine mittels Chromatographie über Heparinsepharose 

(HS) isoliert (Steiner et al. 2009; Schröter et al. 2010). Der Vergleich und die 

Charakterisierung der Senfkeimlinge, die an das Redoxsignal induzierende 

Licht akklimatisiert waren, mit Arabidopsis thaliana Keimlingen war wichtig für 

die Integration neuer Erkenntnisse über Sinapis alba in etablierte Modelle 

(Steiner et al. 2009). Der Effekt auf die transkriptionale Regulierung der zwei 

plastomkodierten Gene psaAB und psbA wurde hinsichtlich Promotererkennung 

und –spezifität untersucht (Steiner et al. 2009). Die Auswirkung von 

Phosphorylierungen auf die Genexpression wurde, durch die Bestimmung des 

Phosphorylierungsgrades der HS Fraktionen, der endogene Kinaseaktivität und 

des kooperativen Einflusses der Kinaseaktivität und des Thiolredoxstatus auf 

die Chloroplastentranskription, untersucht (Steiner et al. 2009).  

HS Fraktionen besitzen einen hohen Grad an DNA- und speziell psaA- und 

psbA-bindenden Proteinen, die durch Massenspektrometrie und Analyse mit 

Brassicales-Datenbanken identifiziert werden können (Steiner et al. 2009; 
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Schröter et al. 2010; Steiner et al. 2011). Der Schwerpunkt lag bei der Analyse 

der essentiellen Untereinheiten der plastidenkodierten plastidären RNA-

Polymerase (PEP), die gut durch 2 dimensionale (2D) blue native (BN) 

Gelelektrophorese präpariert werden konnte (Schröter et al. 2010; Steiner et al. 

2011). 

Der Anteil an Proteinen der Genexpression konnte durch eine zweite 

Chromatographie über Phosphocellulose (PC) zusätzlich zur HS-

Chromatographie erzielt werden (Schröter et al. 2014). In der letzten Publikation 

dieser Arbeit geht es vorrangig um die Visualisierung und Identifizierung dieses 

nukleotidbindenden Teilproteoms, wodurch ein Zugang zu einem detaillierteren 

Einblick in das genexpressionsrelevante Proteom der Senfplastiden erzielt 

wurde (Schröter et al. 2014). 
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